Technical Report, August 20, 2009
VISUS/University Stuttgart and Saarland University

3D Rasterization — Unifying Rasterization and Ray Casting

Carsten DachsbacHér Philipp Slusallek? Tomas Davidovic Thomas Engelhardt Mike Phillips® lliyan Georgiev

1VISUS, University of Stuttgart 2DFKI, Saarland University 3Excellence Cluster M2CI, Saarland University

Abstract

Ray tracing and rasterization have long been considered as two veryediffépproaches to rendering images of
3D scenes that — while computing the same results for primary rays — liepatséip ends of a spectrum. While
rasterization rst projects every triangle onto the image plane and enatasrall covered pixels in 2D, ray tracing
operates in 3D by generating rays through every pixel and then ndiagrt intersection with a triangle. In this
paper we show that, by making a slight change that extends triangle edg@fs to operate in 3D instead of 2D,
the two approaches become almost identical with respect to primary regslting in an ef cient rasterization
technique. We then use this similarity to transfer rendering concepts betwedwo domains. We generalize
rasterization to arbitrary non-planar perspectives as known from ragitrg, while keeping all bene ts from
rasterization. In the reverse we transfer the concepts of renderingist@mcy, which have not been available for
ray tracing thus far. We then demonstrate that the only remaining diffefesivecen rasterization and ray tracing
of primary rays is scene traversal. We discuss a number of appessobm the continuum made accessible by 3D

rasterization.

Categories and Subject Descriptofsccording to ACM

CCS) Computer Graphics [I.3.3]: Picture/Image

Generation—Display algorithms; Computer Graphics [I.3.7]: Thr@addsional Graphics and Realism—;

1. Introduction

The two main algorithms used in computer graphics for gen-
erating 2D images from 3D scenes are rasterizaf®ngg

and ray tracing App68 Whi80]. While they were devel-
oped at roughly the same time, rasterization has quickly
become the dominant approach for interactive applications
because of its initially low computational requirements (no
need for oating point in 2D image space), its ability to
be incrementally moved onto hardware, and later by the
ever increasing performance of dedicated graphics hard-
ware [Ake93 LKMO1, NVIO8]. The use of local per tri-
angle computation makes it well suited for a feed-forward
pipeline. However, the handling of global effects, such as
re ections, is intricate.

Ray tracing, on the other hand, works directly in 3D world
space, typically requiring oating point operations through-
out rendering with recursive visibility queries for global ef-

Y dachsbacher@visus.uni-stuttgart.de
Z slusallek@dfki.de

fects, which require almost random memory access. This has
resulted in the failure of many attempts to map ray tracing to
hardware. Software-only ray tracing for interactive applica-
tions was generally assumed to be non-competitive, and ray
tracing research essentially ceased during the 1990s. How-
ever, recent interactive Whitted-style ray tracing approaches
achieved signi cant performance gainBNIS 99, WSBO0J,
RSHO03 and ray tracing has ef ciently been implemented in
hardware WSS0§. Similar to many of these works, we fo-
cus on primary rays from a camera where rasterization and
ray tracing compute identical results. Casting such coherent
rays has been the focus of much research in ray tracing in re-
cent years. In this spirit, we consider higher-order rays, and
ef cient global illumination algorithms, such as instant ra-
diosity, or photon mapping, as orthogonal to our approach.

Rasterization and ray tracing seemed to be fundamentally
different even for the case of primary rays. In this paper
we show that with just a slight generalization — rasterizing
through 3D edge functions de ned in world space instead of
2D edge functions — we can fold ray casting, i.e. ray tracing
of primary rays, and rasterization into a singIe rasteriza-

2 Dachsbacher et al. / 3D Rasterization

Figure 1: With our approach, ray tracing and rasterization become almost identiithl respect to primary rays. Now rasteri-
zation can directly render to non-planar viewports using parabolic and ldé&tlongitude parameterizations (left images), and
we can transfer rendering consistency and ef cient anti-aliasing seseftom rasterization to ray tracing. The center image
shows the Venice scene consisting of 1.2 million triangles. Our 3D rastiernzaridges both approaches and allows us to ex-
plore rendering methods in between. The right images show the nurhéeége function evaluations per pixel for two different
3D rasterization methods (3DR-BIN and 3DF-FULL, see Seict.

tion algorithm. As a result we can apply many techniques cally, to quickly locate relevant parts of the screen. Many ex-
that have been limited to one approach in the context of tensions to this basic algorithm have been proposed includ-
the other. We demonstrate direct rasterization of non-planar ing the hierarchical Z-bufferGKM93], ef cient computa-

views, as well as ef cient anti-aliasing and fully consistent
intersection computation for 3D rasterization.

In this new setting the only difference between the two algo-

tion of coverage mask&jre9q, hierarchical rasterization in
homogeneous coordinate®E97, and the irregularly sam-
pled Z-buffer PLBMO5].

rithms lies in the way the scene is traversed. Our approach))))
combines the 2D and 3D acceleration structures from ras- N idea of ray tracing was introduced to graphics by Ap-

terization and ray tracing: While the 2D grid of pixels is P€! [APp68, while Whitted \Whi8(] developed the recur-
used to (hierarchically) test tiles of pixels for overlap with ~Sive form of ray tracing. Since then, the two main trends in
atriangle, we can use the same concept to test frusta agains{@Y tracing have been the development of physically correct
the bounding boxes of spatial index structures as used in ray 9/0bal illumination algorithms (see the overview PHO04),
tracing. Similarly, we can make use of an existing 3D spa- an(_:i trylng toreach ree_tl-tlme performanc_e compara_ble to ras-
tial index structure by using frustum culling and occlusion terization. The latter is most often achieved by simultane-
culling in the core rasterization algorithm. Our approach al- ©USly tracing packets of coherent rays to increase perfor-
lows for freely, and continuously, exploring the space be- mance on parallel hardwar&V[SBOJ. Recent approaches

tween traditional ray tracing and rasterization. use large ray packets and optimized spatial index struc-
tures, such as kd-treeREHO0], BVHs [WBSO07, interval

Because 3D rasterization operates in world space it usestrees WSS05WKO06], and 3D grid structuresfJ/IK 06]. A
oating point computation throughout the pipeline. Our recent surveyWMG 07] gives an overview of build and
main target platform is a fully software-based graphics traversal algorithms for spatial index structures used for ray
pipeline on highly parallel and programmable many-core tracing. Related to this paper, Hunt et aiN108] describe
processors, such as Intel's Larrabee. On such platforms therea continuum ofvisibility algorithmsbetween tiled z-buffer

is little, if any, drawback when using oating pointcompared systems and ray tracing by introducing acceleration struc-
to xed-point computation. tures that are specialized for rays with speci ¢ origins and
directions. Our work goes further, folds ray casting and ras-
terization into a single algorithm, and thus allows full explo-
ration of the continuum of rendering algorithms between the
two.

2. Previous Work

Rasterization is currently the dominant rendering tech-
nique for real-time 3D graphics, and is implemented in
almost every graphics chip. The well-known rasterization While rasterization has bene ted tremendously from be-
pipeline [FvDFH9((see Fig.4 for a contemporary design) ing implemented in dedicated hardware, ray tracing was al-
operates on projected and clipped triangles in 2D. The core most exclusively limited to software implementations, even
of the rasterization algorithm, coverage computation, deter- when executed on the same graphics hardwBBMHO02,
mines, for all pixels (and possibly several sub-samples in HSHHO7 PGSSOT (we consider GPUs as a programmable
each pixel), whether they are covered by a given triangle. hardware dedicated to graphics that runs software imple-
The coverage test typically uses linear 2D distance functions mented as shaders). However, the increasing parallelism and
in image space, one for each triangle edge, whose sign de-programmability of graphics processors make it very likely
termines which side of an edge is inside the triangie8§. that both rendering algorithms will be mostly implemented
These functions can be evaluated in parallel, and hierarchi- in software in the foreseeable futufdro8 SCS 08].

Dachsbacher et al. / 3D Rasterization 3

Figure 3: 3D edge functions for a triangl@o; p1; p2) and a ray starting at the eyegoing through a pixe{x; y) with coordinates
d in world space. Intersection tests and computation of the barycentricddotaies are based on the signed volumes of the

spanned tetrahedra.

3. From 2D to 3D Rasterization

In the following we rst brie y review the traditional 2D ras-
terization technique, as it is implemented in current graphics
hardware, before extending it to 3D. We discuss the modi-
cations that would be required for integration into existing
rendering pipelines, and illustrate bene ts and new possibil-
ities.

3.1. 2D Rasterization

Any linear functiony, on a triangle in 3D, e.g. colors or tex-
ture coordinates, obeys= aX+ bY + cZ, with (X;Y;Z)T
being a point in 3D, and the parametersh, andc can be
determined from any given set of values de ned at the ver-
tices [0G97. Assuming canonical eye space — where the
center of projection is the origin, the view direction is the
Z-axis, and the eld of view is 90 degrees — dividing this
equation byZ yields the well-known 2D perspective correct
interpolation schemeHec89 from which we observe that
u=Z is a linear function in screen-space. During rasteriza-
tion bothu=Z and EZ are interpolated to recover the true
parameter valuay.

Likewise, we can now de ne three linear edge functions in
the image plane for every triangle (F@). Their values are

ical implementations use either a quad-tree subdivision in
image space starting from the entire screen or the triangle's
bounding box, or they locate relevant parts by sliding a larger
bin over the screen, followed by further subdivision or per-
pixel evaluation. Binning can be seen as similar to culling a
triangle from a frustum of primary rays in ray tracing. Note
that there are other triangle rasterization algorithms as well,
but hierarchical rasterization has proven to be the most ef-
cient and hardware-friendly algorithm and we thus restrict
our discussion to it.

3.2. 3D Rasterization

Testing whether a pixel sample is covered by a 2D triangle
is equivalent to testing if a ray, beginning at the eye, going
through that pixel, intersects the triangle. RBg.depicts this
using the following notatione is the eye location, and the
ray goes througll = dg + xdx + ydy, for pixel coordinates
(x;y), while pg, p1, p2 are the vertices of the triangle.

We can now formulat&D linear edge functionsising the
signed volume idea well-known as the Pluecker ray-triangle
intersection testQ'R98,KS06. We rst consider the trian-
gle formed by the rst edg@op; and the eye (see Figb).

For notational simplicity in this explanation, but without loss
of generality, we assume thatis in the coordinate origin,

equal to zero on two vertices and one on the opposite ver- and thus the normal of the triangleris= p; po. For better

tex [OG97. A pixel is inside the triangle if all three edge

functions are positive at its location and thus coverage com-
putation becomes a simple evaluation of the three edge func-

tions, which is well suited for parallel architectures. Hierar-
chical testing of pixel regions for triangle coverage, called
binning, is a major factor for rendering performance. Typ-

p2

Pod oP; P1

Figure 2: Left: The 2D edge function for the edggp2
which can be evaluated in parallel. A hierarchical search
can quickly locate pixels covered by the triangle (right).

numerical stability with small triangles we use, mathemati-
cally equivalentn, = p1 (po p1) in practice, and for the
cross-product we also use a consistent ordering of vertices
of adjacent triangles. We de ne the corresponding 3D edge
function asv>(x) = ny X, which is equivalent to computing

the scaled signed volume of the tetrahedron with veriiges

p1, X, ande (here the origin). The scaling factor of 6 can be
ignored as intersection tests are based on the signs and ratios
of volumes.V,(x) is positive for allx in the half-space con-
tainingpz (Fig. 3c). In analogy we de né/y andV; using:

Ni = P(i+2) mod3 P(i+1) mod3
Vi(x) = nj x, withi= 0;1;2: (1)
We denote the scaled volume of the tetrahedron spanned by
the triangle and the origin by = pj n; (for any j = 0::2).
To determine if the triangle is hit by a ray in the positive
direction we only need to consider the signs of the volumes

4 Dachsbacher et al. / 3D Rasterization

Geometry Processing

Fragment Processing

Fragment Operations

Modeling & Viewing

d Clipping and
Transformation .

:s”srgm : Projective
(optional: Lighting) | Y H Transformation

Hierarchical 1 Interpolation of E 1 Depth Test, i
Rasterization v Vertex Attributes 4 \ Stencil Operations,
Early Z-Test {Pixel Shading/Texturing| | ¢ Blending, ... 1

b 9 [9

Figure 4: A depiction of the rasterization pipeline. When using 3D rasterization only gtestage of geometry processing and
the rst step of fragment processing (shown in red), requires madions.

Vi andV: The raye+ t%, t°> 0, hits the triangle if all four
volumes have the same sign. If the sign is positive, it hits the
triangle's front face, otherwise it hits the back face.

At the intersection pointd, the sum of the tetrahedra vol-
umesV(td) = nj (td) equals the volum& = p; nj (for

j = 0::2) of the tetrahedron spanned by the triangle and the
origin. Solving fort we get:

V = Vo(td) + Vi (td)+ Va(td)

t=V=(Vo(d) + Vi(d)+ Vo(d)) : &)

We can also write the intersection poitd, using barycen-
tric coordinates asd = | gpo+ | 1p1+ | 2p2 (Fig. 3d), which

are in turn de ned by the ratio of the scaled signed volumes,
Vi, with I'j = Vi(d)=(Vp(d) + Va(d) + Vo(d)) [KSO€]. Note
that we do not need to compute the ray parametertest

for intersections or to determine the barycentric coordinates,
but we use it to compute the intersection coordinate and for
the depth test.

Similar to 2D edge functions, we can compute the deriva-

tives of the 3D edge functions with respect to screen space.

Not only aredx = fd={x anddy = d=fly constant for planar
views, but alsd/i;x = Vi=Tx andV;;y = TVi=Ty:

Vi(d)= nj d=n; (do+ xdx+ ydy)

vi(d) vi(d)
= =n; dx and V;.y =
ﬂx I X Ly ﬂy
These derivatives can be used as in 2D for de ning rendering
consistency (Sect.2) and for incremental evaluation of the
edge functions. However, the derivatives of the barycentric
coordinatesl| i, are not constant due to the perspective pro-

Vi;X =N dy: (3)

3.3. Comparison of 2D and 3D Rasterization

In this section we brie y summarize the similarities and dif-

ferences of hierarchical 2D rasterization (commonly used in

software and hardware renderers) and 3D rasterization:

Both use edge functions which can be incrementally or
directly evaluated in image space to de ne the interior and
exterior of triangles.

3D rasterization can have lower cost; Although the edge
functions are de ned in 3D, the evaluation takes place in
2D. Perspective correct computation of barycentric coor-
dinates requires less operations than with 2D rasterization.
Figure 10 in the appendix compares 2D and 3D rasteri-
zation with respect to arithmetic operations required for
setup and evaluation of edge functions.

No projection and clipping is required for 3D rasteriza-
tion and thus it is not limited to planar viewports (see
Sect.4.1); Setup computation, i.e. computing Vi(e+
do), Vi:x, andVi.y, only depends on the camera position.

Due to operation in world space, 3D rasterization oper-
ates on oating point data as in ray tracing. Some of the
consequences are discussed below.

3.4. A Rendering Pipeline with 3D Rasterization

Integrating 3D rasterization into the established rendering
pipeline requires some modi cations. 2D and 3D rasteriza-
tion mainly differ in how they handle projection and viewing.
Note that traditional viewing transformations can remain un-
changed and, in this case, only modi cations to the projec-
tive transformation and the rasterizer stage are necessary.

Projective Transformation 3D rasterization is very similar
to generating primary rays in ray tracing. The projective ma-

jection. Once an intersection is found we can easily compute trix would be replaced by a new per-frame setup computing

t andl ; for per-pixel texturing and shading.

Using 3D rasterization It is important to note that although
3D rasterizationis based on 3D edge functions it stié-
quires 2D evaluations onlyl'his is because the edge evalua-
tions per pixels boil down to computing(dg) + X Vix+y

Vi.y for each edge given a pixéxk;y).

dx anddy (depending on the eye positieand the eld of
view determined bylg) for the evaluation of edge functions.

Homogeneous Coordinates The traditional rendering

pipeline uses homogeneous coordinates, primarily for per-
spective transformations, but other geometric calculations
can be expressed elegantly using these coordinates. 3D ras-

terization as explained above works in Euclidian space and
Whether a direct or incremental evaluation is preferred de- vertex coordinates need to be dehomogenized rst. If we al-
pends on the renderer's architecture and binning strategy. In low vertices, or the camera (for orthographic projections), to
our implementations we used the direct evaluation through- lie at in nity, an evaluation of the edge functions in homoge-
out as it is more exible, only marginally slower, and less neous coordinates is necessary. In the appendix we demon-
prone to rounding errors. strate how to extend out method accordingly.

Dachsbacher et al. / 3D Rasterization 5

Hierarchical Rasterization 3D rasterization requires a dif- as in [GHFPO08, as this requires an additional set of edge
ferent setup step for triangle rendering: A view-dependent functions in image space. Instead we propose to modify the
computation ofn; from its vertices and the eye positios), locations where the edge functions are evaluated for bin-
and computing the signed volumes and derivatives thereof. ning. This is based on simple observations: The parabolic
projection of a linepgpy is a circle arc with radiug =

iinz i 1, withn=(po p1)ipo puii; the center is at
(Nx=nz; ny=nz)T [GHFPO0§. A bin, of sizem m, fails to de-
tect the intersection of eonvex edgé the circle intersects
one side of the binning region only. We can compute the
maximum penetration depth of the§ircle which would still

Viewing Transformation ~ Optionally we can also replace
the canonical eye space transformation by a typical ray trac-
ing camera. By this we can exploit the fact that setup of
the triangle edge functions (Etj) only depends on the eye
position and not on the view direction. This can be bene -
cial when rendering multiple viewports for one camera po-
sition, e.g. when rendering cube environment maps. Note
that when this modi cation is made the view and projective
transformations can be combined into a single pipeline stage.

not be detected (Figsh) by p=r r2 m?=4 (a com-
putationally simpler, tight bound fggisp m(1 3=2),

asr 1). By virtually shifting the bin corners towards the
circle center byp we obtain a conservative intersection test
with the curved edge. Note that we only need to shift one
4. Bene ts of 3D Rasterization side of the bin, determined by the largest magnitude coordi-
nate of the vectos going from the bin center to the circle
center. Lastly, iff < m=2 the circle might lie entirely inside
the bin and we always need to split and recursively test the
bin for triangle coverage.

Our generalization allows us to use the same core routine
for rendering images in rasterization and ray tracing of pri-
mary rays. As a consequence we can transfer rendering con-
cepts from one to the other. We demonstrate rasterization
with non-linear projections, and introduce rendering consis- We estimated the overhead for binning with this algorithm
tency and anti-aliasing techniques known from rasterization for paraboloid mapping by rendering randomly generated
to ray tracing. Lastly, we discuss the continuum of rendering triangles. Approximately 18% of the bins have been re-
algorithms that can be explored using 3D rasterization. ned, although they did not intersect a triangle. We used the
conservative upper bound fgr precomputed for xed bin
sizes, thus introducing only marginal computational over-
head. Similar binning strategies can be developed for other
The key to ef cient rendering is a cheap computatiorvpf ~ hon-linear projections by geometric reasoning.

for quickly testing for intersections and computing barycen-

tric coordinates. We will discuss the hemispherical view ob- @ Pooc--.. (B
tained from the well-known parabolic mappirtg$9g as an / .
example. The paraboloid function i{x;y) = 1 30+
v?), with x*+ y? 1, the direction vectors of the hemi-
spherical viewport arel = (xy; f(xy)) ", and the ray ori- Figure 5: Binning evaluates the edge functions at the four
ginise=(0,0;0". Bothd andVi(d) = n; d can be corners (red squares) and thus misses intersections with
eVaanted directly, but as they are quadl’atiC fUnCtiOnS we curved edges which are circular arcs (a) We Compute the
can also use a double incremental scheme to compute theirmaximum penetration of convex edges (b), and shift the lo-
values. For an incremental evaluation of a 3D edge func- cations where each of the edge functions is evaluated (c).
tion, Vi, we initialize the computation for the pixdlxo; o),

and the corresponding direction vectdg, with V = V;(dp),

Vx = Vix(do) andVy = Viy(do). When going from a pixel, 4.2, Rasterization Consistency

X;y), to another pixel(x+ Dx;y+ Dy), we update: . R .
() pixel(N y+ oy P One important feature of 2D rasterization is thahsistency
74

\% V + V;(Dx; Dy) > + Dx(Vx nz)+ Dy(Vy ng) rulescan be de ned. They ensure that each pixel intersecting

adjacent triangles is rasterized exactly once. This is impor-
Vx o Vx mDxandVy o Vy o nyDy “) tant to avoid holes and incorrect blending when rendering
with semitransparent materials. A common rule, which is

. L nGL and Dir D, is th -left llin n-

Note that parabolic rasterization has also been demonstratedused. by Qpe G a d Direct3D, is the t_o_p eft fling co
. - . vention with the pixel center as the decisive point. If it re-

with GPUs [GHFPO0§ by determining 2D bounding shapes . . . o

. . . sides on an edge then it belongs to the triangle to its right, or
for the curved triangles followed by per-pixel ray-triangle . . . :
. . o . below if the edge is horizontaMic06].
intersections. 3D rasterization naturally handles non-linear
projections (Fig.1 shows two images generated with our For 3D rasterization we adopt the same consistency rules.
method), but hierarchical binning is based on the assump- We determine the triangle a pixel belongs to based on the
tion that edges are straight lines between the projected ver- barycentric coordinates. If a pixel center lies on a triangle
tices (Fig.5a). We avoid computing a 2D bounding shape, edge, i.e.lj = 0, we base the decision on the derivatives

4.1. Non-planar Viewports

P
Pl

6 Dachsbacher et al. / 3D Rasterization

e
°
°

o N_o o
Lol
:
(%
e

=0

g

a) c)

Figure 6: Rasterization consistency: we adopt the top-left — - .
lling convention from OpenGL and Direct3D for 3D raster- Figure 7: We also integrated anti-aliasing techniques into
ization based on the barycentric coordinates and the deriva- 3D rasterization: The rendering time using the 3DR-FULL
tives of V. algorithm (see Sect) was 930 ms without anti-aliasing
(left), 10270 ms for 16 MSAA (center), and 4022 ms for
CSAA NVIOg with 4 shading and 12 coverage samples
(right). Shading is computed using recursive ray tracing with

of Vi. For an edge, as shown in red in F&g, the deriva- 1 shadow ray, and 1 re ection ray for every sample.

tive V. is positive for one triangle only, and we assign the

pixel to that triangle. If the edge is horizontali = 0), 4.4. The 3D Rasterization Continuum

we use the derivativ¥.y as the secondary criterion of the) o))
top-left convention (Fig6b). Similarly, we decide for pix- With 3D rasterization, the scene traversal is left as the main

els centered on vertices: The pixel belongs to the triangle difference between rasterization and ray tracing of primary

o its right (Fig. 6c), or to the one below if it resides on '@ys- This forms a continuous space with each at an opposite
a horizontal edge, i.e. it belongs to the triangle for which gnd. Whlle. pure.rasterlzatlon mg;t enumeratg all triangles
(Vix > 07 Vi > 0) _ (Vi = 07 Vi > 0),with | ;= 1 ;= 0. in a scene in arbitrary order, tr_adltlonal ray t_racmg traversgs

Note that both derivatives are zero only for edges collapsed the Scene for every ray, each time enumerating only the min-
to a point, and thus for degenerated triangles which are not IMum number of possible overlapping triangles.

rasterized. A known intermediate sample point is frustum traversal of a

)]]]) spatial index structureISH0g, enumerating all primitives
So far no fully consistent ray-triangle intersection algorithm ¢ the scene overlapping the frustum. On the other hand

is known for ray tracing: A ray-triangle intersection is as- given a frustum of rays (e.g. the entire screen, a tile, or a

sumed to happen if O I 1 for the three barycentric co- gjnge pixel), we must ef ciently compute their intersections
ordinates. This can lead to inconsistencies at shared edges,yity the triangles by the frustum (i.e. coverage computa-

or vertices, of adjacent triangles. If multiple intersections tion).

are to be avoided, a scene-dependent epsilon distance along

the ray is chosen by the user such that only one intersec- This leads us to the following combined approach (see
tion may occur. By using 3D rasterization as a replacement Fig. 8), where F is a frustum and N is a node of the spatial
for ray-triangle intersection of primary rays, the consistency index structure (typically starting with the entire viewport
rules naturally transfer to ray tracing and enable fully consis- and the root node, respectively). The blue keywords denote
tent rendering. Using these Consistency rules we did not spot oracles which control the behaviour of the algorithm. For ex-
any precision problems with direct evaluation or incremental

evaluation for small bin sizes.

traverse(frustum F, node N) {
if (isOccluded or isOutside) retun ; // Fig. 9a

if (splitFrustum) { /I Fig. 9b
 Aliaci split F into subfrusta Fi /I Fig. 9¢
4.3. Anti-aliasing foreach (Fi) traverse(Fi, N)
else
Anti-aliasing is crucial for high-quality image synthesis, but f} (generateSamples) {
it is computationally expensive and requires a lot of memory rasterize(N, binning) Il Fig. 9d

and bandwidth. Most renderers use super-sampling, i.e. they }oelse {)

actually compute the image at a higher resolution and down- forfrz\c,grse((Eh"fhi%f 0’\]1 ?\l)
sample the color buffer. Modern graphics hardware goes ongy } '

step further and decouples coverage sampling (determining
what fraction of a pixel is covered by a triangle) from shad-
ing computation: The coverage of sub-samples can be ef -
ciently computed in 2D and 3D rasterization while shading is
often the bottleneck. In this spirit, we added multi-sampling
and anti-aliasing with coverage samples (CSARY[08] to

our 3D rasterization framework (see Fig).

Figure 8: This continuous rendering algorithm allows us to
explore the continuum of methods between rasterization and
ray tracing. Note that theasterize function can be re-
placed by a ray-triangle intersections, or 2D rasterization
for linear projections.

Dachsbacher et al. / 3D Rasterization

frustum culled

z =

(@) (b) split frustum

center ray

BVH node

ray frustum

surface
intersections
occlusion culled

(c) splitting &
recursive

(d) generate
samples

ray frustum F

Figure 9: The continuous rendering algorithm traverses frusta through a spati@xrstructure, and determines the frustum
samples covered by triangles. It consists of three operations: frustthoeclusion culling (a), frustum splitting (b, c), and

sample generation (d).

ample, the algorithm behaves like a standard 2D rasterizer if
we X generateSamples andbinning as true, and all
other oracles as false. To obtain a coherent ray tressec-
cluded andisOutside perform a test to determine if a
spatial index node intersects a ray frustum or is occluded
by other geometrysplitFrustum is false; Thegen-
erateSamples oracle controls the traversal of the spatial
index structure and is true for leaves only, where it starts
a per-pixel ray-triangle intersection computation instead of
rasterizing the triangles.

We can now combine concepts from both ends of the con-
tinuum and use occlusion and frustum culling based on the
spatial index hierarchy with binning at the rasterization level
as an additional 2D acceleration structure. We also exper-
imented with adaptively splitting ray frusta, which can be
bene cial for scenes with an irregular distribution of detail.

5. Evaluation, Results and Discussion

For a meaningful evaluation of 3D rasterisation (3DR) we

conducted numerous experiments running on CPUs and
GPUs, and compare 3DR to highly optimized 2D rasteriza-

tion (2DR) and ray tracing implementations.

First, we developed a prototype CPU implementation of
3D rasterization and all components required to explore the
3D rasterization continuum outlined above. In order to as-
sess the performance of the resulting rendering algorithms
we compare this implementation to state-of-the-art highly-
coherent ray tracing on CPU$/BS07 implemented in RT-
fact [GS0§, and to a SSE hand-optimized 2D rasterization
algorithm. For the latter we implemented two versions, one
evaluating all pixels inside a triangle's 2D bounding box
(2DR-BB), and one with hierarchical binning starting from
the triangle's bounding box and using early-z-culling (2DR-
BIN).

In between these two extremes, we examined the following
sample points of the continuum:

Pure 3D rasterization with brute-force evaluation of all
pixels inside a triangle's bounding box (3DR-BB).

Pure 3D rasterization with early-z-culling and binning
identical to the 2DR binning strategy (3DR-BIN).

3DR with frustum culling: We subdivide the screen into
frusta of 256 pixels and use a bounding volume hier-
archy (BVH) to facilitate view frustum culling. Rasteri-
zation uses binning when leaf-nodes of the BVH are se-
lected for rendering (3DR-FC).

3DR without binning, but instead using occlusion culling
and frustum splitting (3DR-FS): A frusta is recursively
split, down to & pixels, if a frustum's center ray misses
a BVH node's bounding box (Figb, c), or if the box is
small compared to the frustum.

Combining the two previous options using occlusion
culling and adaptive frustum splitting rst, followed by
3DR with binning and early-z-culling (3DR-FULL).

Table 1 summarizes our benchmarks. We give measured
frame times in milliseconds (ms), for the frame shown as
inset, in order to compare the relative performance in a CPU
software implementation. To allow a prediction of hardware
speed we also report the number of triangle setups, edge
function evaluations, and frustum vs. BVH-node intersec-
tions. The BVH was generated off-line using a SAH met-
ric [WBS07 taking between 1 second to 1 minute for our
test scenes. Building such acceleration structures for dy-
namic scenes is an active, yet orthogonal, research area; for
recent work see Lauterbach et dldS 09].

We observe that 3DR-BB is faster than 2DR-BB in most
scenes, although we typically evaluate edge functions more
often. The latter is because we cannot always determine tight
screen space bounding boxes in 3DR for triangles that would
be clipped in 2D rasterization, and we fall back to binning
starting from the entire screen in these cases. This also ex-
plains why 2DR-BB is faster in scenes with fewer, large tri-
angles, such as the Sponza and the Conference scenes. The
overhead of hierarchical binning (3DR-BIN and 2DR-BIN)
apparently does not amortize in our CPU implementations
for the average triangle size in our test scenes. 3D rasteriza-
tion with BVHs achieves a performance comparable to the
highly optimized RTfact implementation and 3DR-FS/3DR-
FULL even beat it for the Buddha and Teapots scenes which
exhibit a large number of very small triangles. This is due
to the adaptive frustum splitting; for the Teapots2 scene the
early-z culling in 3DR-FULL provides an additional small
speed-up.

Dachsbacher et al. / 3D Rasterization

Venice Conference | Soda Out Soda In Sponza Buddha Teapots 1 | Teapots 2
T=1.236k T=191k T=2.169k T=2.169k T=67k T=1.088k T=2.332k | T=2.332k
RTfact 203ms 135ms 142ms 105ms 97ms 512ms 1796ms 857ms
519ms 97ms 994ms 786ms 92ms 464ms 962ms 1053ms
2DR-BB S=438k S=45k S=1444k S=631k S=26k S=563k S=1231k S=1176k
E=9817k E=2340k E=10008k E=11546k E=3912k E=2376k E=4763k E=9547k
535ms 105ms 1021ms 818ms 93ms 467ms 957ms 1052ms
2DR-BIN S=438k S=45k S=1444k S=631k S=26k S=563k S=1231k S=1176k
E=5975k E=1586k E=9345k E=8839k E=2000k E=2376k E=4763k E=9547k
393ms 138ms 618ms 591ms 166ms 310ms 598ms 699ms
3DR-BB S=633k S=87k S=1082k S=1064k S=38k S=532k S=1217k S=1181k
E=9044k E=2599k E=8107k E=14625k E=6806k E=1912k E=3964k E=7894k
1310ms 318ms 2084ms 1609ms 235ms 1470ms 2963ms 3135ms
3DR-BIN S=633k S=87k S=1082k S=1064k S=38k S=532k S=1217k S=1181k
E=17441k E=3367k E=19720k E=14259k E=2067k E=20873k | E=46685k | E=41542k
452ms 186ms 915ms 340ms 130ms 831ms 1751ms 1793ms
3DR-FC S=380k S=46k S=1107k S=500k S=29k S=540k S=1234k S=1221k
E=4775k E=3648k E=4443k E=1519k E=1415k E=11051k | E=28439k | E=16321k
N=257k N=34k N=821k N=377k N=21k N=393k N=829k N=842k
381ms 293ms 281ms 258ms 216ms 387ms 907ms 796ms
3DR-FS S=595k S=475k S=370k S=156k S=195k S=808k S=1959k S=1543k
E=12223k E=8709k E=6139k E=4214k E=4923k E=12935k | E=31347k | E=24694k
N=622k N=566k N=646k N=279k N=233k N=598k N=1778k N=1958k
287ms 218ms 259ms 164ms 142ms 403ms 960ms 768ms
3DR-FULL S=266k S=168k S=370k S=57k S=69k S=808k S=1959k S=1543k
E=9085k E=6136k E=3327k E=1877k E=1721k E=10187k | E=26368k | E=14492k
N=252k N=184k N=646k N=102k N=83k N=598k N=1778k N=1958k

Table 1: Rendering statistics for the algorithms explained in Seoteasured using one core of an Intel C2Q 9300 at 2.67GHz.
Timings are given in milliseconds (ms) for the frames shown above, howevesnder primary rays with constant colors
at 1024 1024 resolution without anti-aliasing only (lighting and secondary rays are neotuded in the timings as they

are independent from the method used for primary rays). We also giveuthber of triangles (T), triangle setups (S), edge

evaluations (E), and nodes visited during BVH traversal (N). Note thatbers are given in thousands (k) and all methods use
backface-culling.

With regard to future graphics hardware, such as Intel's 6. Conclusions and Future Work
Larrabee, we ran a comparison of the basic 2D and 3D ras- R . q zation h | b idered
terization algorithms “close to the metal” (see also Appendix ay tracing and rasterization have long been considered as

and Figure10). We implemented both algorithms as Di- Fwo dist?nct rendering approaches. We showed that by mak-
rect3D shaders running on a GPU, and emulate the software-""9 & S"th change that extends triangle edge func_tlons_ to
rasterization of a triangle by letting the GPU render a square. operate in 3D, th? two approaches_ become almost |Qen_t|cal
In both cases a vertex shader carries out the setup (we omi‘[-Wlth respect to primary rays. This yields a new rasterization
ted clipping for 2DR), and a pixel shader performs per-pixel technique which is faster than traditional 2D rasterization,
edge function evaluations and computes perspective correctand requires Igs_s operatlons for setup and evaluation. The ac-
depth and barycentric coordinates. In order to avoid GPU in- ,Comp“Shed similarity further aIIovyes usto transfer rgnder-
tricacies and to compare pure rasterization performance we Ing concepts betwgen bOth rasterlzatlpn and ray tracing. We
disabled depth-buffering and output all results color-coded. presented a generic algc_)rlthm that brldges_ bOth worlds and
The shaders were compiled using vertex/pixel shader 3.0 opens up a continuum with numerous possibilities for future
pro les. On an NVIDIA GeForce 8800GTX 3DR outper- research, allowing us to explore and compare new rendering
forms 2DR (homogeneous 2DR) for 262144 triangles with methods.
153.9 to 120.6 (120.7) frames per second (fps), and with e also believe that 3D rasterization makes the rendering
1155 to 1073 (1079) fps for 256 triangles (both rendered at pipeline — in future uni ed software rendering pipeline ar-
1920 1200 reSOlUthﬂ, trlangles placed next to each other chitectures — Simp|er and more e|egant’ but we aim for fur-
such that they I the screen). Note that 2DR normally re- ther generalization. In particular, a parameterization which
quires an additional clipping step that we omitted. allows for incremental computation, not only for the ray di-
rection, but also the ray origin. This has a vast number of

Dachsbacher et al. / 3D Rasterization 9

applications in rendering, such as the rendering of global ef- Usingg;, @, andgs with the bottom row of Eqg6 yields:
fects requiring secondary rays that are intricate to handle in

o . . . Wi + Wotp + W3l = We, and
rasterization, and expensive to compute in ray tracing. 1% 20+ Wl ©

9)

Using Eq.8 we can compute the barycentric coordinates (in
homogeneous space) using four determinants. Through sim-
ple modi cations, we obtain a reformulation using only three
determinants which reduces the triangle setup cost during
rasterization:

1
Dioy = We [W1Dg23e+ W2D1dze+ W3D12qe]
Acknowledgements

We would like to thank Veronica Sundstedt for the model of
the Ancient Egyptian Temple of Kalabsha.

) _ Dd2ze
Appendix & WeW1Dd23e+ W2D 143e + W3D12de
In this appendix we demonstrate how 3D rasterization, as _ D143e
introduced in Sectior3, can be extended to homogeneous @ = WewlDd23e+ W2D 193¢ + W3D 124e
coordinates. Again, we start from the tetrahedron spanned by D12de

the triangle itself, and the origin of the rays, i.e. the camera or WiDg2ze+ WoD 1436 + W3D12ge

eye position. Given a triangle with vertices = (WiVi;Wi)T,
i=1;2;3,andw; 6 0, an eye positiolWe = (weVe;we)T, and
a view directiond = (d; O)T, apointV(t) = Ve+ td lying in
the plane of the triangle (in view direction, ite> 0) can be
written as:

V()= at)Vi+ @(t)Va+ B()Va+ Ge(t)Ve,

with ge(t) = 0: (5)

This is equivalent to a linear system of equations:

WeVe;x + tdx
% WeVey + tdy (= _
WeVez + tdz -
We
10 1
WiVix WoVox WaVay WeVex au(t)
WiViy WoVoy WaVay WeVey ;% () g'(G)
WiViz WaVoz W3V3z WeVez @) A
wy W w3 We G(t)

We denote the determinant of a 44 matrix with column
vectorsVj, Vj, Vi, andV, asDijj :
Dijw = Vi Vj Vg V|

Solving the system of equations with Cramer's rule yields:

Doz D1dze
) =t , =1t ,
a(t) Dirs () Dirs
D D +tD
w() = (212 o)= (D123 + tD12g) .)
D12z D12z

Fromge(t) 2 0 follows that(D 123+ tD12%) 4 0, and thus:

{= D=,
Di2a
By substituting = Biﬁ into Egs.7 we get:
_ Dd2ze _ Didze | _ Dixe. ®)
Doy’ Doy’ Di2a

Since all operations are carried out on homogenous coordi-
natesg, @, g3, andt are given in homogenous space as well.
The corresponding barycentric coordinaﬁsis: 1;2;3,and

the depthoin real space are obtained by:

t
g? = Wi, i: Wolp, g%: W30, to_ We: (11)

Orthographic Projection

3D rasterization also handles orthographic projections. We
rewrite Eqg.5 using the view directiord instead of the eye
position and solve:

V(t) = a(Vai+ R()Va+ w(t)Va+ g(t)d,
with gy(t) = 0O 12)
Again V(t) = Ve+ td, but in this cas&/e is a point on the

image plane, i.&Ve=(X;y; 1; 1)T. Analogous to the perspec-
tive projection we apply Cramer's rule and obtain:

D D
a) = =22)= 2=
Di1oay Dioay
D D +tD
@) = 21%d g)= (D123 + tD12a). (13)
D12 Di2ay
We now observe that = 81239, but expectedlyy, i =

1;2;3, no longer depend onlzt%e depth Analogously to
Eq. 10 we obtain:
WeD g3
W1Depzg + WaD1e3q + W3D 12
WeD 1634
W1Depzg + WaD 163 + W3D 124
WeD 1204

= : 14
® W1Depag + WoD1e3q + W3D 1264 (14)

Rasterization

For rasterization of perspective views, we parameterize our
direction vector over the image plane for pixéksy) as:

d=do+ xdx + ydy

10

and hence obtain:

Da2ze = Ddy2ae* XDg23e+ YDd,23
Didze = Didyze™ XD1d,3e+ YD1d,3e
Diode = Dioge* XD1oge+ YD 12d,e (15)

For orthogonal views the observer positidnis parameter-
ized over the image plane instead, and analogously we car
derive expressions for the incremental update

Ve= Vgt XVeg t YWe,

and obtain:
De2sd = Dey2ad + XDg23d + YD 23d
Diesd = Diey3zd+ XD1gad + YD1g,3d
Dized = Di2eyd+ XD12e,d + YD 126, (16)

Dachsbacher et al.

/ 3D Rasterization

/I Perpixel operations

/I Input outputs from setup

I pixel position vector xyl=(xy,1)

void rasterize(

in float4 VWO, in float4 VV1, in floatd VW2,
in float4 W, in float3 xyl)

{
float4 gad; //= (gamma_lgamma_2gamma_3 depth)
gadx = dot(xyl, VWOxyz), // D_{d.23¢e}
gady = dot(xyl, Wixyz); / D {1,d,3¢e}
gadz = dot(xyl, W2xyz); // D_{1,2de}
gadw = VWOw; /I D_{1,2,3¢}

flvx<0& & vy<0& & vz<0)
{
float D123d = dot(gadxyz, Wxyz);

/I gamma and depth values in homogenous space
gad = (gad * Ww)/ D123d;

/I project barycentrics and depth into real space
gad = gadxyzw * floatd(Wxyz, 1f / Ww);

SetPixel x, y, gadx, gady, gadz, gadw);

Homogeneous 3D Rasterization

The following pseudo code (following the Direct3D HLSL
syntax) handles 3D rasterization for perspective views. Note
that the setup code is generic and is not optimized for xed

Side-by-side Comparison to 2D Rasterization

In Figure 10 we show a side-by-side comparison of the 3D
rasterization method optimized for dehomogenized coordi-

camera positionsl Viewing directions etc. The same code can nates, 2D rasterization, and homogeneous 2D rasterization

be using for orthographic projections. In this ca4gis re-
placed by the view direction, and0, DX andDY are re-
placed byWEOQ, VEX VEY (identical to Eqs15and16).

float det3(in float3 vO, in float3 v1, in float3 v2) {
retumn dot(vO, cross(v, v2));

float det4(in float4 vO, in float4 vi,
in float4 v2, in float4 v3) {

float d = O;

d += v3w * det3(vOxyz Vlxyz V2xyz);
d-=v2w * det3(vOxyz vlxyz V3xyz);
d += viw * det3(vOxyz v2Xyz, V3xyz);
d -=vOw * det3(vlxyz v2xyz, V3xyz);
retum d;

/I pertriangle rasterization setup for perspective 3D ras terization
/I Input camera position VE
I triangle vertices V1, V2, V3

VA image parameterization DO, DX, DY
/I Output determinants in W0, W1, W2
n homogeneousw in W
void setup(
in float4 VE, in float4 V1, in float4 V2, in float4 V3,
in float4 DO, in float4 DX, in float4 DY,
out float4 VVO, out floatd VV1, out floatd VV2,

out float4 W
) {

WO = floatd(
detd(DX, V2, V3, VE), Il D_{dx23¢}
det4(DY, V2, V3, VE), Il D_{dy,2.3¢}
det4(DO, V2, V3, VE), /I D_{d02,3€}
detd(V1, V2, V3, VE)), // D_{1,23¢}

W1 = floatd(
det4(V1, DX, V3, VE), Il D_{1dx3¢}
det4(V1, DY, V3, VE), Il D_{1dy3¢}
det4(V1, DO, V3, VE), 0); // D_{1,d03e}

W2 = float4(
det4(V1, V2, DX, VE), Il D_{1,20xe}
detd(V1, V2, DY, VE), Il D_{1,2dy,e}
detd(V1, V2, DO, VE)0); // D_{1,2d0e}

W = float4(Viw, V2w, V3w, VEw);
}

in Direct3D HLSL syntax. We give the number of scalar
instruction required for setup, and per-pixel evaluation, and
also the number of instruction slots when compiling the code
using the vertex/pixel shader 3.0 pro les.

References

[Ake93] AKELEY K.: Reality engine graphics. I8IGGRAPH
'93 (1993).

[App68] APPELA.: Some techniques for shading machine ren-

derings of solids. IMFIPS '68 (Spring): Proceedings of the April
30-May 2, 1968, spring joint computer confereiit@68).

[FVDFH90] FoLEYJ.D.,vAN DAM A., FEINERS. K., HUGHES
J. F.: Computer Graphics: Principles and Practice (2nd ed.)
Addison-Wesley Longman Publishing Co., Inc., 1990.

[GHFP0O8] ASCUEL J.-D., HOLZSCHUCH N., FOURNIER G.,
PEROCHEB.: Fast non-linear projections using graphics hard-
ware. InSI3D '08: Proceedings of the 2008 Symposium on Inter-
active 3D Graphics and Gamé¢2008).

[GKM93] GREENEN., KASS M., MILLER G.: Hierarchical Z-
buffer visibility. In SIGGRAPH '931993).

[Gre96] GREENEN.: Hierarchical polygon tiling with coverage
masks. INSIGGRAPH '96(1996).

[GS08] GeORGIEVI., SLUSALLEK P.: Rtfact: Generic concepts
for exible and high performance ray tracing. FProceedings
of the IEEE / EG Symposium on Interactive Ray Tracing 2008
(2008).

[Hec89] HeckBERTP. S.:Fundamentals of Texture Mapping and
Image Warping Tech. rep., Berkeley, CA, USA, 1989.

[HMO8] HuNT W., MARK W. R.: Ray-specialized acceleration
structures for ray tracing. IEEEE/EG Symposium on Interactive
Ray Tracing 200§Aug 2008).

[HS98] HEIDRICH W., SEIDEL H.-P.: View-independent envi-
ronment maps. l#Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS workshop on Graphics hardw#i®98).

Dachsbacher et al. / 3D Rasterization

11

2D Rasterizer

2D Homogeneous Rasterizer

3D Rasterizer (for cartesian coordinates)

Triangle Setup (assuming that the eye position is in the origin;cadenote the triangle vertices):

float4 vO = mul(projMat, a);
float4 v1 = mul(projMat, b);
float4 v2 = mul(projMat, c);

float w0 = v0.w; vO /= wO0;
float wl=vl.w;vl/=wl;
float w2 =v2.w; v2 /= w2; /I3 RCP, 9 MUL
float3 D12 = cross(v1.xyw, v2.xyw);
float3 D20 = cross(v2.xyw, vO.xyw);
float3 DO1 = cross(v0.xyw, v1.xyw);

/1 3*(3 MUL,3 MADD)

float DET = dot(vO.xyw, D12);

/l'1 MUL, 2 MADD
float3x3 InterpolationMatrix = /19 MUL, 1 RCP
float3x3(D12, D20, DO1) / DET;

float3 DEPTH = float3(v0.z, vl.z,v2.z) *
InterpolationMatrix; /I'3MUL, 6 MADD
float3 ONE_OVER_W =
float3(1.0 /w0, 1.0/w1,1.0/w2) *
InterpolationMatrix;
/I 3 RCP, 3 MUL, 6 MADD

float4 vO = mul(projMat, a);
float4 v1 = mul(projMat, b);
float4 v2 = mul(projMat, ¢);

float3 D12 = cross(v1.xyw, v2.xyw);
float3 D20 = cross(v2.xyw, vO.xyw);
float3 DO1 = cross(v0.xyw, v1.xyw);
1/ 3%(3 MUL,3 MADD)

float DET = dot(vO.xyw, D12);

/l'1 MUL, 2 MADD
float3x3 InterpolationMatrix = /19 MUL,1 RCP
float3x3(D12, D20, DO1) / DET;

float3 DEPTH = float3(v0.z, vl1.z,v2.z) *
InterpolationMatrix; /I'3 MUL, 6 MADD
float3 ONE_OVER_W =
float3(1.0, 1.0, 1.0) *
InterpolationMatrix;
/I'6 ADD

/1'd0, dx, dy defines the camera
float3 n0 = cross(b—c, c);
float3 n1 = cross(c—a, a);
float3 n2 = cross(a—b, b);

/I 3 MUL, 3 MADD
/'3 MUL, 3 MADD
/'3 MUL, 3 MADD

/I'1 MUL, 2 MADD
/I'1 MUL, 2 MADD
/I 1 MUL, 2 MADD
/I'1 MUL, 2 MADD
/'1 MUL, 2 MADD
/I'1 MUL, 2 MADD
/I'1 MUL, 2 MADD
/I'1 MUL, 2 MADD
/I'1 MUL, 2 MADD
/I 1 MUL, 2 MADD

float V. =dot(no, a);

float VO = dot(n0, d0);
float V1 =dot(n1, do0);
float V2 =dot(n2,do0);
float VOx = dot(n0, dx);
float VOy = dot(nO, H
float V1x = dot(n1,
float V1y = dot(n1,
float V2x = dot(n2, ;
float V2y = dot(n2, dy);

cgoogo

Output of the setup stage:

InterpolationMatrix(112, 120, 101)
DEPTH, ONE_OVER_W

InterpolationMatrix (112, 120, 101)
DEPTH, ONE_OVER_W

VO = float4(VOx, VOy, VO, V);
V1 = float3(V1x, V1y, V1);
V2 = float3(V2x, V2y, V2);

Per-Triangle Arithmetic Operations / Instruction Slots

23 MADD, 0 ADD, 34 MUL, 4 RCP = 55 Ops
1DP3, 12 DP4, 7 MAD, 6 MOV, 11 MUL, 4 RCP =41
1 DP3, 7 MAD, 3 MOV, 11 MUL, 4 RCP = 27

17 MADD, 6 ADD, 22 MUL, 1 RCP = 46 Ops
1DP3, 12 DP4, 7 MAD, 6 MOV, 7 MUL, 1 RCP = 34
1DP3, 7 MAD, 5 MOV, 7 MUL, 1 RCP =21

29 MADD, 0 ADD, 19 MUL = 48 Ops
3 ADD, 10 DP3, 3 MAD, 2 MOV, 3 MUL =21

Per-Pixel Operations for a pixel with coordinates

(x,y), with xyflbat3(x, y, 1.0)

float EO1 = dot(101, xy1);
float E12 = dot(112, xy1);
float E20 = dot(120, xy1);

/1 3*2 MADD
if(E12<0&& E20<0&& E01<0)
float Z, W, u, v;

W = 1.0/ dot(ONE_OVER_W, xy1);
// 2 MADD, 1 RCP

Z = dot(DEPTH, xyl) * W;

/I’ 2 MADD, 1 MUL
u=E12*W
v=E20*W

/l'1 MUL
/I'1 MUL

result = float4(u, v, Z, 0.0);

float EO1 = dot(101, xy1);
float E12 = dot(112, xy1);
float E20 = dot(120, xy1);

1/ 3*2 MADD
if(E12<0&&E20<0&&E01<0)
float Z, W, u, v;

W =1.0/dot(ONE_OVER_W, xy1);
// 2 MADD, 1 RCP

Z = dot(DEPTH, xy1) * W;
i 2’ MADD, 1 MUL

/I'1 MUL
/I'1 MUL

u=EO0L*W,;
v=E12*W;

result = float4(u, v, Z,0.0);

float4 v = float4(
dot(xy1, VO.xyz),
dot(xy1, V1.xyz),
dot(xy1, V2.xyz),
Vo.w); 1/ 3*2 MADD
if(vx>08&&vy>08&&Vv.z>0)

float invV = 1.0f / dot(v.xyz, 1);
/I'1 RCP, 2 ADD
VXYW *= invV; /I 3 MUL

result = float4(v.x, v.y, v.w, 0.0);

Per-Pixel Arithmetic Operations / Instruction Slots

10 MADD, 3 MUL, 1 RCP = 14 Ops
1DIV, 5DP3,4 CMP, 2 MUL, 1 MOV = 13

10 MADD, 3 MUL, 1 RCP = 14 Ops
4 CMP, 5 DP3, 1 MUL, 2 MOV, 1 RCP =13

6 MADD, 2 ADD, 3 MUL, 1 RCP =12 Ops
4 CMP, 4 DP3, 2 MOV, 1 MUL, 1 RCP =12

Figure 10: Relative costs of 3D rasterization optimized for dehomogenized coordiaate¢homogeneous) 2D rasteriza-
tion [OG97 including perspective correct computation of depth and barycentriordioates for interpolation: additions
(ADD), multiplications (MUL) and reciprocals (RCP). Multiply-add (MADperations are used where possible to replace
sequent MUL and ADD operations. Red numbers denote the numbealaf sperations, blue denotes the number of instruc-
tion slots when the code is compiled using Direct3D's HLSL compiler for thexfpixel shader 3.0 pro les. The green number
denote the setup cost for 2D (homogeneous) rasterization if the projentrix multiplication is ignored. We assume that a
camera transformation is applied that transforms the observer into the dbigfiore the setup. Clipping cost is also ignored in
this comparison.

12

[HSHHO7] HorN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree gpu raytracing. IBD '07: Pro-
ceedings of the 2007 Symposium on Interactive 3D Graphids an
Gamegq2007).

[JLBMO5] JOHNSON G. S., LEgE J., BURNS C. A., MARK
W. R.: The irregular z-buffer: Hardware acceleration foedgu-
lar data structuresACM Trans. on Graph. 244 (2005).

[KS06] KENSLERA., SHIRLEY P.: Optimizing ray-triangle inter-
section via automated search. Proceedings of the IEEE Sym-
posium on Interactive Ray Tracir{§006).

[LGS 09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LueBKE D., MANOCHA D.: Fast bvh construction on gpus.
Computer Graphics Forum 2& (2009).

[LKMO1] L INDHOLM E., KILGARD M. J., MORETONH.: A
user-programmable vertex engine.SHtGGRAPH '01(2001).

[Mar08] MARK W.: Future graphics architectureQueue 6 2
(2008).
[MicO6] MicrosofFT Direct3D 10 Reference. Direct3D 10

graphics, http://msdn.microsoft.com/directx, 2006.

[NVIO8] NVIDIA: NVIDIA GPU programming guide.
http://developer.nvidia.com, December 2008.

[OG97] OLaNO M., GREER T.: Triangle scan conversion us-
ing 2D homogeneous coordinates. Pmceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware
(1997).

[O'R98] O'ROURKE J.: Computational Geometry in.CCam-
bridge University Press, New York, NY, USA, 1998.

[PBMHO02] PURCELLT.J., Buckl., MARK W. R., HANRAHAN
P.: Ray tracing on programmable graphics hardwareAQiv
Trans. on Graph. (Proceedings of SIGGRAPH 20@2)02).

[PGSS07] PPOVS., GUNTHERJ., SEIDEL H.-P., SUSALLEK
P.: Stackless kd-tree traversal for high performance gptraay
ing. Computer Graphics Forum (Proceedings of Eurographics)
26, 3 (Sept. 2007).

[PHO4] PHARR M., HUMPHREYSG.: Physically Based Render-
ing: From Theory to ImplementationMorgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004.

[Pin88] RNEDA J.: A parallel algorithm for polygon rasteriza-
tion. Computer Graphics (Proceedings of SIGGRAPH '88) 22
(1988).

[PMS 99] PARKERS. G., MARTIN W., SLOAN P.-P., $IIRLEY
P., SwiTs B., HANSEN C.: Interactive ray tracing. liPro-
ceedings of the 1999 symposium on Interactive 3D graphids an
gamegq1999).

[RSHO5] RESHETOVA., SOUPIKOV A., HURLEY J.: Multi-level
ray tracing algorithm.ACM Trans. on Graph. (Proceedings of
SIGGRAPH 2005) 24 (2005).

[SCS 08] SeILER L., CARMEAN D., SPRANGLE E., FORSYTH
T., ABRASH M., DUBEY P., UNKINS S., LAKE A., SUGER-
MAN J., CavIN R., ESPASAR., GROCHOWSKIE., JUAN T.,
HANRAHAN P.: Larrabee: a many-core x86 architecture for vi-
sual computing. ACM Trans. on Graph. (Proceedings of SIG-
GRAPH 2008) 273 (2008).

[WBS07] WALD |., BouLOS S., SHIRLEY P.: Ray tracing de-

formable scenes using dynamic bounding volume hierarchies.

ACM Trans. on Graph. (Proceedings of SIGGRAPH 2007) 26
1 (2007).

[Whi80] WHITTED T.: An improved illumination model for
shaded displayCommunications of the ACM 28 (1980).

Dachsbacher et al. / 3D Rasterization

[WIK 06] WALD I., 1zET., KENSLERA., KNOLL A., PARKER
S. G.: Ray tracing animated scenes using coherent grid salver
ACM Trans. on Graph. (Proceedings of SIGGRAPH 2006)35
(2006).

[WK06] WACHTER C., KELLER A.: Instant ray tracing: The
bounding interval hierarchy. IRroceedings of the Eurograph-
ics Symposium on Renderi(@0p06).

[WMG 07] WALD I., MARK W. R., GUNTHERJ., BOULOSS.,
IzE T., HUNT W., PARKER S. G., $HIRLEY P.: State of the art
in ray tracing animated scenes. $TAR Proceedings of Euro-
graphics 20072007).

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive
distributed ray tracing of highly complex models. Render-
ing Techniques 2001 (Proceedings of the 12th EUROGRAPHICS
Workshop on Rendering2001).

[WSS05] WooP S., SCHMITTLER J., SUSALLEK P.: RPU:
A programmable ray processing unit for realtime ray tracing.
In ACM Trans. on Graph. (Proceedings of SIGGRAPH 2005)
(2005), vol. 24.

