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Abstract: We introduce a theoretical and practical framework for efficient importance sampling of mini-batch samples

for gradient estimation from single and multiple probability distributions. To handle noisy gradients, our

framework dynamically evolves the importance distribution during training by utilizing a self-adaptive met-

ric. Our framework combines multiple, diverse sampling distributions, each tailored to specific parameter

gradients. This approach facilitates the importance sampling of vector-valued gradient estimation. Rather

than naively combining multiple distributions, our framework involves optimally weighting data contribution

across multiple distributions. This adapted combination of multiple importance yields superior gradient es-

timates, leading to faster training convergence. We demonstrate the effectiveness of our approach through

empirical evaluations across a range of optimization tasks like classification and regression on both image and

point cloud datasets.

1 Introduction

Stochastic gradient descent (SGD) is fundamental in

optimizing complex neural networks. This iterative

optimization process relies on the efficient estimation

of gradients to update model parameters and mini-

mize the optimization objective. A significant chal-

lenge in methods based on SGD lies in the influ-

ence of stochasticity on gradient estimation, impact-

ing both the quality of the estimates and convergence

speed. This stochasticity introduces errors in the form

of noise, and addressing and minimizing such noise in

gradient estimation continues to be an active area of

research.

Various approaches have been introduced to re-

duce gradient estimation noise, including data diver-

sification Zhang et al. (2019); Faghri et al. (2020);

Ren et al. (2019), adaptive mini-batch sizes Balles

et al. (2017); Alfarra et al. (2021), momentum-based

estimation Rumelhart et al. (1986); Kingma and Ba

(2014), and adaptive sampling strategies Santiago
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et al. (2021). These methods collectively expedite the

optimization by improving the gradient-estimation

accuracy.

Another well-established technique for noise

reduction in estimation is importance sampling

(IS) Loshchilov and Hutter (2015); Katharopoulos

and Fleuret (2017, 2018), which involves the non-

uniform selection of data samples for mini-batch con-

struction. Data samples that contribute more signifi-

cantly to gradient estimation are selected more often.

This allows computational resources to focus on the

most critical data for the optimization task. However,

these algorithms are quite inefficient and add signifi-

cant overhead to the training process. Another limita-

tion of importance sampling, in general, lies in deter-

mining the best sampling distribution to achieve max-

imal improvement, often necessitating a quality trade-

off due to the simultaneous estimation of numerous

parameters.

We propose an efficient importance sampling al-

gorithm that does not require resampling, in contrast

to Katharopoulos and Fleuret (2018). Our importance

function dynamically evolves during training, utiliz-

ing a self-adaptive metric to effectively manage ini-

tial noisy gradients. Further, unlike existing IS meth-

ods in machine learning where importance distribu-

tions assume scalar-valued gradients, we propose a



multiple importance sampling (MIS) strategy to man-

age vector-valued gradient estimation (i.e., multiple

parameters). We propose the simultaneous use of

multiple sampling strategies combined with a weight-

ing approach following the principles of MIS theory,

well studied in the rendering literature in computer

graphics Veach (1997). Rather than naively combin-

ing multiple distributions, our proposal involves esti-

mating importance weights w.r.t. data samples across

multiple distributions by leveraging the theory of opti-

mal MIS (OMIS) Kondapaneni et al. (2019). This op-

timization process yields superior gradient estimates,

leading to faster training convergence. In summary,

we make the following contributions:

• An efficient IS algorithm with a self-adaptive met-

ric for importance sampling is developed.

• An MIS estimator for gradient estimation is intro-

duced to improve gradients estimation.

• A practical approach to computing the OMIS

weights is presented to maximize the quality of

vector-valued gradient estimation.

• The effectiveness of the approach is demonstrated

on various machine learning tasks.

2 Related work

Importance sampling for gradient estimation.

Importance sampling (IS) Kahn (1950); Kahn and

Marshall (1953); Owen and Zhou (2000) has emerged

as a powerful technique in high energy physics,

Bayesian inference, rare event simulation for finance

and insurance, and rendering in computer graphics.

In the past few years, IS has also been applied in

machine learning to improve the accuracy of gradi-

ent estimation and enhance the overall performance

of learning algorithms Zhao and Zhang (2015).

By strategically sampling data points from a non-

uniform distribution, IS effectively focuses training

resources on the most informative and impactful data,

leading to more accurate gradient estimates. Bordes

et al. (2005) developed an online algorithm (LASVM)

that uses importance sampling to train kernelized sup-

port vector machines. Loshchilov and Hutter (2015)

suggested employing data rankings based on their re-

spective loss values. This ranking is then employed

to create an importance sampling strategy that as-

signs greater importance to data with higher loss val-

ues. Katharopoulos and Fleuret (2017) proposed im-

portance sampling the loss function. Subsequently,

Katharopoulos and Fleuret (2018) introduced an up-

per bound to the gradient norm that can be em-

ployed as an importance function. Their algorithm

involves resampling and computing gradients with re-

spect to the final layer. Despite the importance func-

tion demonstrating improvement over uniform sam-

pling, their algorithm exhibits significant inefficiency.

Multiple importance sampling. The concept of

Multiple Importance Sampling (MIS) emerged as a

robust and efficient technique for integrating multi-

ple sampling strategies Owen and Zhou (2000). Its

core principle lies in assigning weights to multiple

importance sampling estimator, each using a differ-

ent sampling distribution, allowing each data sam-

ple to utilize the most appropriate strategy. Veach

(1997) introduced this concept of MIS to rendering in

computer graphics and proposed the widely adopted

balance heuristic for importance (weight) allocation.

The balance heuristic determines weights based on

a data sample’s relative importance across all sam-

pling approaches, effectively mitigating the influence

of outliers with low probability densities. While MIS

is straightforward to implement and independent of

the specific function, Variance-Aware MIS Grittmann

et al. (2019) advanced the concept by using variance

estimates from each sampling technique for further

error reduction. Moreover, Optimal MIS Kondapa-

neni et al. (2019) derived optimal sampling weights

that minimize MIS estimator variance. Notably, these

weights depend not only on probability density but

also on the function values of the samples. Ap-

pendix B summarizes the theory behind (multiple)

importance sampling. It also states the optimal MIS

estimator and how to compute it.

3 Problem statement

The primary goal of machine-learning optimization is

to find the optimal parameters θ for a given model

function m(x,θ) by minimizing a loss function L over

a dataset Ω:

θ∗ = argmin
θ

∫
Ω

L(m(xi,θ),y)dx.
︸ ︷︷ ︸

Lθ

(1)

The loss function L quantifies the dissimilarity be-

tween the model predictions m(x,θ) and observed

data y. In the common case of a discrete dataset, the

integral becomes a sum.

In practice, the total loss is minimized via iterative

gradient descent. In each iteration t, the gradient ∇Lθt

of the loss with respect to the current model parame-

ters θt is computed, and the parameters are updated
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Figure 1: We visualize different importance sampling distributions for a simple classification task. We propose to use the
output layer gradients for importance sampling, as shown in the network diagram (a). For a given ground-truth classification
(top) and training dataset (bottom) shown in (b), it is possible to importance sample from the L2 norm of the output-layer
gradients (c) or from three different sampling distributions derived from the gradient norms of individual output nodes (d).
The bottom row shows sample weights from each distribution.

as

θt+1 = θt −λ

∫
Ω

∇L(m(x,θt),y)dx

︸ ︷︷ ︸

∇Lθt

, (2)

where λ > 0 is the learning rate. It is also possible to

use an adaptive learning rate instead of a constant.

Monte Carlo gradient estimator. In practice, the

parameter gradient is estimated from a small batch

{xi}
B
i=1 of randomly selected data points:

⟨∇Lθ⟩=
B

∑
i=1

∇L(m(xi,θ),yi)

Bp(xi)
≈∇Lθ, xi∼ p. (3)

The data points are sampled from a probability den-

sity function (pdf) p or probability mass function in

discrete cases. The mini-batch gradient descent sub-

stitutes the true gradient ∇Lθt
with an estimate ⟨∇Lθt

⟩
in Eq. (2) to update the model parameters in each it-

eration.

We want to estimate ∇Lθt
accurately and also effi-

ciently, since the gradient-descent iteration (2) may

require many thousands of iterations until the pa-

rameters converge. These goals can be achieved by

performing the optimization in small batches whose

samples are chosen according to a carefully designed

distribution p. For a simple classification problem,

Fig. 1c shows an example importance sampling dis-

tribution derived from the output layer of the model.

In Fig. 1d we derive multiple distributions from the

individual output nodes. Below we develop theory

and practical algorithms for importance sampling us-

ing a single distribution (Section 4) and for combin-

ing multiple distributions to further improve gradient

estimation (Section 5).

4 Mini-batch importance sampling

Mini-batch gradient estimation (3) notoriously suf-

fers from Monte Carlo noise, which can make the

parameter-optimization trajectory erratic and conver-

gence slow. That noise comes from the often vastly

different contributions of different samples xi to that

estimate.

Typically, the selection of the multiple samples

constructing a mini-batch is done with uniform prob-

ability p(xi) = 1/|Ω|. Each data of the mini-batch

is sampled with replacement following this distribu-

tion. Importance sampling is a technique for using a

non-uniform pdf to strategically pick samples propor-

tionally on their contribution to the gradient, to reduce

estimation variance.

Practical algorithm. We propose an importance

sampling algorithm for mini-batch gradient descent,

outlined in Algorithm 1. Similarly to Schaul et al.

(2015), we use an importance function that relies on

readily available quantities for each data point, in-

troducing only negligible memory and computational

overhead over classical uniform mini-batching. We

store a set of persistent un-normalized importance

scalars q = {qi}
|Ω|
i=1 that are updated continuously dur-

ing the optimization.

The first epoch is a standard SGD one, during

which we additionally compute the initial importance

of each data point (line 3). In each subsequent epoch,

at each mini-batch optimization step t we normalize

the importance values to a valid distribution p (line

6). We then choose B data samples (with replace-

ment) according to p (line 7). The loss L is evaluated

for each selected data sample (line 8), and backprop-

agated to compute the loss gradient (line 9). The per-



Algorithm 1 Mini-batch importance sampling for

SGD.

1: θ← random parameter initialization
2: B← mini-batch size, N = |Ω| ← Dataset size

3: q,θ← Initialize(x,y,Ω,θ,B) ← Algorithm 4

4: until convergence do ← Loop over epochs

5: for t← 1 to N/B ← Loop over mini-batches

6: p← q/sum(q) ← Normalize importance to pdf

7: x,y← B data samples {xi,yi}
B
i=1 ∝ p

8: L(x)← L(m(x,θ),y)
9: ∇L(x)← Backpropagate(L(x))

10: ⟨∇Lθ⟩ ← (∇L(x) · (1/p(x))T )/B ← Eq. (3)

11: θ← θ−λ⟨∇Lθ⟩ ← SGD step

12: q(x)← α ·q(x)+(1−α) ·
∥
∥
∥

∂L(x)
∂m(x,θ)

∥
∥
∥

13:

14: q← q+ ε ↱ Accumulate importance

15: return θ

sample importance is used in the gradient estimation

(line 10) to normalize the contribution. In practice

lines 9-10 can be done simultaneously by backpropa-

gating a weighted loss L(x) · (1/(p(x)·B))T . Finally, the

network parameters are updated using the estimated

gradient (line 11). On line 12, we update the impor-

tance of the samples in the mini-batch; we describe

our choice of importance function below. The blend-

ing parameter α ensures stability of the persistent im-

portance as discussed in Appendix E. At the end of

each epoch (line 14), we add a small value to the un-

normalized weights of all data to ensure that every

data point will be eventually evaluated, even if its im-

portance is deemed low by the importance metric.

It is important to note that the first epoch is done

without importance sampling to initialize each sam-

ple importance. This does not add overhead as it is

equivalent to a classical epoch running over all data

samples. While similar schemes have been proposed

in the past Loshchilov and Hutter (2015), they of-

ten rely on a multitude of hyperparameters, making

their practical implementation challenging. This has

led to the development of alternative methods like

re-sampling Katharopoulos and Fleuret (2018); Dong

et al. (2021); Zhang et al. (2023). Tracking impor-

tance across batches and epochs minimizes the com-

putational overhead, further enhancing the efficiency

and practicality of the approach.

Importance function. In combination with the pre-

sented algorithm, we propose an importance function

that is efficient to evaluate. While the gradient L2

norm has been shown to be optimal Zhao and Zhang

(2015); Needell et al. (2014); Wang et al. (2017);

Alain et al. (2015), calculating it can be computation-

ally expensive as it requires full backpropagation for

every data point. To this end, we compute the gradient

norm only for a subset of the parameters, specifically

the output nodes of the network: q(x) =
∥
∥
∥

∂L(x)
∂m(x,θ)

∥
∥
∥.

This choice is based on an upper bound of the gradient

norm, using the chain rule and the Cauchy–Schwarz

inequality Katharopoulos and Fleuret (2018):
∥
∥
∥
∥

∂L(xi)

∂θ

∥
∥
∥
∥
=

∥
∥
∥
∥

∂L(x)

∂m(x,θ)
·

∂m(x,θ)

∂θ

∥
∥
∥
∥
≤ (4)

∥
∥
∥
∥

∂L(x)

∂m(x,θ)

∥
∥
∥
∥
·

∥
∥
∥
∥

∂m(x,θ)

∂θ

∥
∥
∥
∥
≤

∥
∥
∥
∥

∂L(x)

∂m(x,θ)

∥
∥
∥
∥

︸ ︷︷ ︸

q(x)

·C ,

where C is the Lipschitz constant of the parameters

gradient. That is, our importance function is a bound

of the gradient magnitude based on the output-layer

gradient norm.

We tested the relationship between four

different importance distributions: uni-

form, our proposed importance function,
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the loss func-

tion as impor-

tance Katharopou-

los and Fleuret

(2017), and

the work by

Katharopoulos

and Fleuret (2018)

using an other gradient norm bound. The inline figure

plots the L2 difference between these importance

distributions and the ground-truth gradient-norm

distribution across epochs for an MNIST classifica-

tion task. It shows that Our IS distribution has the

smallest difference, i.e., it achieves high accuracy

while requiring only a small part of the gradient.

For some specific task when the output layer has

predictable shape, it is possible to derive a closed

form definition of the proposed importance metric.

Appendix D derives the close form importance for

classification task using cross entropy loss.

Note that any importance heuristic can be used

on line 12 of Algorithm 1, such as the gradi-

ent norm Zhao and Zhang (2015); Needell et al.

(2014); Wang et al. (2017); Alain et al. (2015), the

loss Loshchilov and Hutter (2015); Katharopoulos

and Fleuret (2017); Dong et al. (2021), or more ad-

vanced importance Katharopoulos and Fleuret (2018).

For efficiency, our importance function reuses the

forward-pass computations from line 8, updating q

only for the current mini-batch samples.



5 Multiple importance sampling

The parameter gradient ∇Lθ is vector with dimension

equal to the number of model parameters. The in-

dividual parameter derivatives vary uniquely across

the data points, and estimation using a single distri-

bution (Section 4) inevitably requires making a trade-

off, e.g., only importance sampling the overall gradi-

ent magnitude. Truly minimizing the estimation error

requires estimating each derivative using a separate

importance sampling distribution tailored to its varia-

tion. However, there are two practical issues with this

approach: First, it would necessitate sampling from

all of these distributions, requiring “mini-batches” of

size equal at least to the number of parameters. Sec-

ond, it would lead to significant computation waste,

since backpropagation computes all parameter deriva-

tives but only one of them would be used per data

sample. To address this issue, we propose using a

small number of distributions, each tailored to the

variation of a parameter subset, and combining all

computed derivatives into a low-variance estimator,

using multiple importance sampling theory. As an ex-

ample, Fig. 1d shows three sampling distributions for

a simple classification task, based on the derivatives

of the network’s output nodes, following the bound-

ary of each class.

MIS gradient estimator. Combining multiple sam-

pling distributions into a single robust estimator has

been well studied in the Monte Carlo rendering liter-

ature. The best known method is multiple importance

sampling (MIS) Veach (1997). In our case of gradient

estimation, the MIS estimator takes for form

⟨∇Lθ⟩MIS =
J

∑
j=1

n j

∑
i=1

w j(xi j)
∇L(m(xi j,θ),yi j)

n j p j(xi j)
, (5)

where J is the number of sampling distributions, n j

the number of samples from distribution j, and xi j the

ith sample from the jth distribution. Each sample is

modulated by a weight w j(xi j); the estimator is unbi-

ased as long as ∑J
j=1 w j(x) = 1 for every data point x

in the dataset.

Optimal weighting. Various MIS weighting func-

tions w j have been proposed in literature, the

most universally used one being the balance heuris-

tic Veach (1997). In this work we use the recently

derived optimal weighting scheme Kondapaneni et al.

(2019) which minimizes the estimation variance for a

given set of sampling distributions p j:

w j(x) = α j

p j(x)

∇L(m(x,θ),y)
+

n j p j(x)

∑J
k=1 nk pk(x)

(

1−
∑J

k=1 αk pk(x)

∇L(m(x,θ),y)

)

. (6)

Here, ααα = [α1, . . . ,αJ ] is the solution to the linear sys-

tem

AAAααα = bbb, with







a j,k =
∫

Ω

p j(x)pk(x)

∑J
i ni pi(x)

d(x,y),

b j =
∫

Ω

p j(x)∇L(m(x,θ),y)

∑J
i ni pi(x)

d(x,y),

(7)

where a j,k and b j are the elements of the matrix AAA ∈

R
J×J and vector bbb ∈ R

J respectively.

Instead of explicitly computing the optimal

weights in Eq. (6) using Eq. (7) and plugging them

into the MIS estimator (5), we can use a shortcut eval-

uation that yields the same result Kondapaneni et al.

(2019):

⟨∇Lθ⟩OMIS =
J

∑
j=1

α j. (8)

In Appendix B we provide an overview of MIS

and the aforementioned weighting schemes. Impor-

tantly for our case, the widely adopted balance heuris-

tic does not bring practical advantage over single-

distribution importance sampling (Section 4) as it is

equivalent to sampling from a mixture of the given

distributions; we can easily sample from this mixture

by explicitly averaging the distributions into a single

one. In contrast, the optimal weights are different for

each gradient dimension as they depend on the gradi-

ent value.

Practical algorithm. Implementing the optimal-

MIS estimator (8) amounts to drawing n j samples

from each distribution, computing ααα for each dimen-

sion of the gradient and summing its elements. The

integrals in AAA and bbb (sums in the discrete-dataset case)

can be estimated as ⟨AAA⟩ and ⟨bbb⟩ from the drawn sam-

ples, yielding the estimate ⟨ααα⟩= ⟨AAA⟩−1⟨bbb⟩.
Algorithm 2 shows a complete gradient-descent

algorithm. The main differences with Algorithm 1

are the use of multiple importance distributions qqq =
{q j}

J
j=1 (line 5) and the linear system used to com-

pute the OMIS estimator (line 6). This linear system

is updated (lines 15-18) using the mini-batch samples

and solved to obtain the gradient estimation (line 22).

Since the matrix ⟨AAA⟩ is independent of the gradient

estimation (see Eq. (7)), its inversion can be shared

across all parameter estimates.



Algorithm 2 Optimal multiple importance sampling

SGD.

1: θ← random parameter initialization
2: B← mini-batch size, J← number of pdf
3: N = |Ω| ← dataset size
4: n j← sample count per technique, for j ∈ {1, ..J}
5: qqq,θ← InitializeMIS(x,y,Ω,θ,B) ← Algorithm 5

6: ⟨AAA⟩ ← 0J×J ,⟨bbb⟩ ← 0J ← OMIS linear system

7: until convergence do ← Loop over epochs

8: for t← 1 to N/B ← Loop over mini-batches

9: ⟨AAA⟩ ← β⟨AAA⟩,⟨bbb⟩ ← β⟨bbb⟩
10: for j← 1 to J ← Loop over distributions

11: p j← q j/sum(q j)

12: x,y← B data samples {xi,yi}
n j

i=1 ∝ p j

13: L(x)← L(m(x,θ),y)
14: ∇L(x)← Backpropagate(L(x))
15: S(x)← ∑J

k=1 nk pk(x)
16: WWW ← ni pi(x)/∑J

k=1 nk pk(x) ↰ Momentum estim.

17: ⟨AAA⟩ ← ⟨AAA⟩+(1−β)∑
n j

i=1 WWW iWWW
T
i

18: ⟨bbb⟩ ← ⟨bbb⟩+(1−β)∑
n j

i=1 ∇L(xi)WWW i/S(xi)

19: qqq(x)← αqqq(x)+(1−α)
∂L(x)

∂m(x,θ)
20:

21: ⟨ααα⟩ ← ⟨AAA⟩−1⟨bbb⟩
22: ⟨∇Lθ⟩OMIS← ∑J

j=1⟨α j⟩

23: θ← θ−η⟨∇Lθ⟩OMIS ← SGD step

24:

25: return θ
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Figure 2: Convergence comparison of polynomial regres-
sion of order 6 using different method. Exact gradient show
a gradient descent as baseline and classical SGD. For our
method, we compare importance sampling and OMIS using
n = 2 or 4 importance distributions. Balance heuristic MIS
is also visible. Our method using OMIS achieve same con-
vergence as exact gradient.

Momentum-based linear-system estimation. If

the matrix estimate ⟨AAA⟩ is inaccurate, its inversion can

be unstable and yield a poor gradient estimate. The

simplest way to tackle this problem is to use a large

number of samples per distribution, which produces a

accurate estimates of both AAA and bbb and thus a stable

solution to the linear system. However, this approach

is computationally expensive. Instead, we keep the

sample counts low and reuse the estimates from previ-

ous mini-batches via momentum-based accumulation,
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Figure 3: Classification error convergence for MNIST clas-
sification for various methods. Both Katharopoulos and
Fleuret (2018) (DLIS) and resampling SGD approach. In
comparison, our two method use the presented algorithm
without resampling. It is visible that while DLIS perform
similarly to our IS at equal epoch, the overhead of the
method makes ours noticeably better at equal time for our
IS and OMIS.

shown in lines 17–18, where β is the parameter con-

trolling the momentum; we use β = 0.7. This accu-

mulation provides stability, yields an estimate of the

momentum gradient Rumelhart et al. (1986), and al-

lows us to use 1–4 samples per distribution in a mini-

batch.

Importance functions. To define our importance

distributions, we expand on the approach from Sec-

tion 4. Instead of taking the norm of the entire output

layer of the model, we take the different gradients sep-

arately as qqq(x)= ∂L(x)
∂m(x,θ) (see Fig. 1d). Similarly to Al-

gorithm 1, we apply momentum-based accumulation

of the per-data importance (line 19 in Algorithm 2). If

the output layer has more nodes than the desired num-

ber J of distributions, we select a subset of the nodes.

Many other ways exist to derive the distributions, e.g.,

clustering the nodes into J groups and taking the norm

of each; we leave such exploration for future work.

6 Experiments

Implementation details. We evaluate our impor-

tance sampling (IS) and optimal multiple importance

sampling (OMIS) methods on a set of classifica-

tion and regression tasks with different data modal-

ities (images, point clouds). We compare them to

classical SGD (which draws mini-batch samples uni-

formly without replacement), DLIS Katharopoulos

and Fleuret (2018), and LOW Santiago et al. (2021).

DLIS uses a resampling scheme that samples an ini-

tial, larger mini-batch uniformly and then selects a

fraction of them for backpropagation and a gradient

step. This resampling is based on an importance sam-

pling metric computed by running a forward pass for

each initial sample. LOW applies adaptive weighting

to uniformly selected mini-batch samples to give im-
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(Our IS) outperforms LOW Santiago et al. (2021) and DLIS
weights at equal epochs (left). It also converges faster than
LOW and DLIS weights at equal time (right).

0 25 50 75 100 125 150 175 200

# Epochs

3 × 101

4 × 101

Cl
as

sif
ic

at
io

n 
er

ro
r

0 1000 2000 3000 4000 5000 6000 7000

Time (s)

Classical SGD DLIS LOW Our IS

Figure 5: Comparisons on CIFAR-10 using Vision Trans-
former (ViT) Dosovitskiy et al. (2020). The results show
our importance sampling scheme (Our IS) can improve
over classical SGD, LOW Santiago et al. (2021) and
DLIS Katharopoulos and Fleuret (2018) on modern trans-
former architecture.

portance to data with high loss. All reported metrics

are computed on data unseen during training, with the

exception of the regression tasks.

All experiments are conducted on a single

NVIDIA Tesla A40 graphics card. Details about the

optimization setup of each experiment can be found

in Appendix A.

Convex problem. We performed a basic con-

vergence analysis of IS and OMIS on a convex

polynomial-regression problem. Figure 2 compares

classical SGD, our IS, and three MIS techniques: bal-

ance heuristic Veach (1997) and our OMIS using two

and four importance distributions. The exact gradi-

ent serves as a reference point for optimal conver-

gence. Balance-heuristic MIS exhibits similar con-

vergence to IS. This can be attributed to the weights

depending solely on the relative importance distribu-

tions, disregarding differences in individual param-

eter derivatives. This underscores the unsuitability

of the balance heuristic as a weighting method for

vector-valued estimation. Both our OMIS variants

achieve convergence similar to that of the exact gra-

dient. The four-distribution variant achieves the same

quality as the exact gradient using only 32 data sam-

ples per mini-batch. This shows the potential of

OMIS to achieve low error in gradient estimation even
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Figure 6: Comparison of our two methods (Our IS, Our
OMIS) on point-cloud classification using PointNet Qi et al.
(2017) architecture. Our OMIS achieves lower classifica-
tion error at equal epochs, though it introduces computation
overhead as shown at equal-time comparisons. At equal
time, our method using importance sampling achieves the
best performance.

at low mini-batch sizes.

Classification. In Fig. 3, we compare our al-

gorithms to the DLIS resampling algorithm of

Katharopoulos and Fleuret (2018) on MNIST classi-

fication. Our IS performs slightly better than DLIS,

and our OMIS does best. The differences between our

methods and the rest are more pronounced when com-

paring equal-time performance. DLIS has a higher

computational cost as it involves running a forward

pass on a large mini-batch to compute resampling

probabilities. Our OMIS requires access to the gra-

dient of each mini-batch sample; obtaining these gra-

dients in our current implementation is inefficient due

to technical limitations in the optimization framework

we use (PyTorch). Nevertheless, the method manages

to make up for this overhead with a higher-quality

gradient estimate. In Fig. 3 we compare classifica-

tion error; loss-convergence plots are shown in Ap-

pendix F (Fig. 8).

In Fig. 4, we compare our IS against using

the DLIS importance function in Algorithm 1 and

LOW Santiago et al. (2021) on CIFAR-100 classifi-

cation. At equal number of epochs, the difference be-

tween the methods is small (see close-up view). Our

IS achieves similar classification accuracy as LOW

and outperforms the DLIS variant. At equal time the

difference is more important as our method has lower

computational cost. This experiment shows that our

importance function achieves better performance than

that of DLIS within the same optimization algorithm.

Figure 5 shows a similar experiment on CIFAR-10

using a vision transformer Dosovitskiy et al. (2020).

Our IS method achieves consistent improvement over

the state of the art. The worse convergence of (orig-

inal, resampling-based) DLIS can be attributed to its

resampling tending to exclude some training data with

very low importance, which can cause overfitting.

Figure 6 shows point-cloud classification, where

our IS is comparable to classical SGD and our OMIS
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Figure 7: Comparison at equal step for image 2D regression. Left side show the convergence plot while the right display the
result regression and a close-up view. Our method using MIS achieves the lower error on this problem while IS and DLIS
perform similarly. On the images it is visible that our OMIS recover the finest details of the fur and whiskers.

outperforms other methods in terms of classification

error at equal epochs. In complex cases where impor-

tance sampling cannot enhance convergence by pro-

viding a more accurate gradient estimator, our method

is still as efficient as SGD due to minimal overhead.

This means that even though importance sampling

does not offer additional benefits in these scenarios,

our implementation remains competitive with classi-

cal methods. In his case DLIS and our OMIS both

suffer from computational overhead.

We also perform an ablation study for linear-

system momentum in Algorithm 2. We apply same

momentum on the gradient for classical SGD, DLIS

and our IS. Appendix F (Fig. 9) shows this compar-

ison. Our OMIS still outperforms other methods for

this task at equal steps.

Regression. Figure 7 shows results on image re-

gression, comparing classical SGD, DLIS, and our

IS and OMIS. Classical SGD yields a blurry image,

as seen in the zoom-ins. DLIS and our IS meth-

ods achieves similar results, with increased whisker

sharpness but still blurry fur, though ours has slightly

lower loss and is computationally faster, as discussed

above. Our OMIS employs three sampling distribu-

tions based on the network’s outputs which represent

the red, green and blue image channels. This method

achieves the lowest error and highest image fidelity,

as seen in the zoom-in.

7 Limitations and future work

We have showcased the effectiveness of importance

sampling and optimal multiple importance sampling

(OMIS) in machine-learning optimization, leading to

a reduction in gradient-estimation error. Our current

OMIS implementation incurs some overhead as it re-

quires access to individual mini-batch sample gradi-

ents. Modern optimization frameworks can efficiently

compute those gradients in parallel but only return

their average. This is the main computational bottle-

neck in the method. The overhead of the linear system

computation is negligible; we have tested using up to

10 distributions.

Our current OMIS implementation is limited to

sequential models; hence its absence from our ViT

experiment in Fig. 5. However, there is no inherent

limitation that would prevent its use with such more

complex architectures. We anticipate that similar im-

provements could be achieved, but defer the explo-

ration of this extension to future work.

In all our experiments we allocate the same sam-

pling budget to each distribution. Non-uniform sam-

ple distribution could potentially further reduce esti-

mation variance, especially if it can be dynamically

adjusted during the optimization process.

Recent work from Santiago et al. (2021) has ex-

plored a variant of importance sampling that forgoes

sample-contribution normalization, i.e., the division

by the probability p(x) in Eq. (3) (and on line 10 of

Algorithm 1). This heuristic approach lacks proof of

convergence but can achieve practical improvement

over importance sampling in some cases. We include

a such variant of our IS method in Appendix F.

8 Conclusion

This work proposes a novel approach to improve

gradient-descent optimization through efficient data

importance sampling. We present a method incorpo-

rates a gradient-based importance metric that evolves

during training. It boasts minimal computational

overhead while effectively exploiting the gradient of

the network output. Furthermore, we introduce the

use of (optimal) multiple importance sampling for

vector-valued, gradient estimation. Empirical evalu-

ation on typical machine learning tasks demonstrates

the tangible benefits of combining several importance

distributions in achieving faster convergence.
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A Optimization details

Classification. The classification tasks include im-

age classification (MNIST Deng (2012), CIFAR-

10/100 Krizhevsky et al. (2009) and point-cloud

(ModelNet40 Wu et al. (2015)) classification.

The MNIST database contains 60,000 training im-

ages and 10,000 testing images. We train a 3-layer

fully-connected network (MLP) for MNIST over 50

epochs with an Adam optimizer Kingma and Ba

(2014). CIFAR-10, introduced by Krizhevsky et al.

(2009), is a dataset that consists of 60,000 color im-

ages of size 32x32. These images belong to 10 dif-

ferent object classes, each class having 6,000 im-

ages. On the other hand, CIFAR-100 Krizhevsky et al.

(2009) contains 100 classes with 600 images each.

For each class, there are 500 training images and

100 testing images. In our experiments, we train the

ResNet-18 network He et al. (2016) on both datasets.

We apply random horizontal flip and random crops to

augment the data during training. ModelNet40 con-

tains 9,843 point clouds for training and 2,468 for

testing. Each point cloud has 1,024 points. We train

a PointNet Qi et al. (2017) with 3 shared MLP lay-

ers and 2 fully-connected layers for 300 epochs on

point-cloud classification. We use the Adam opti-

mizer Kingma and Ba (2014), with batch size 64,

weight decay 0.001, initial learning rate 0.00002 di-

vided by 2 after 100, 200 epochs.

Regression. Polynomial regression consists of opti-

mizing the coefficients of a 1D polynomial of a given

order to fit randomly drawn data from a reference

polynomial of the same order. The reference data

are generated on the interval [−2;2]. Optimization is

done using an Adam optimizer Kingma and Ba (2014)

with a mini-batch size of 32 elements.

The image regression task consists in learning the

mapping between a 2D coordinate input (pixel coor-

dinate) and the 3-color output of the image for this

pixel. We use a network with 5 fully-connected lay-

ers associated with positional encodings using SIREN

activations Sitzmann et al. (2020). The training is

done over 500 epoch using an Adam Kingma and Ba

(2014) optimizer and each mini-batch is composed of

256 pixels for a 5122 reference image.

B Multiple importance sampling in

brief

Importance sampling. An Importance sampling

Monte Carlo estimator ⟨F⟩IS of a function f is define

as :

⟨F⟩IS =
n

∑
i=1

f (xi)

np(xi)
, xi ∝ p(x). (9)

With xi the ith data sample drawn following the prob-

ability distribution function p(x).
The effectiveness of this estimator depends on the

relation between the functions f (x) and p(x). The

variance of such estimator is :

Var[⟨F⟩IS] =
1

n
Var[ f/p]. (10)

Reducing variance in the estimation depends on the

proportionality between the function f and the prob-

ability density p.

When dealing with multivariate functions, finding

a probability density proportional to every parameters

is often impractical. A trade-off is required to ob-

tain a single probability distribution maximizing the

proportionality with all the parameters of the func-

tion simultaneously. Several studies, such as Zhao

and Zhang (2015); Needell et al. (2014); Wang et al.

(2017); Alain et al. (2015), have shown that the opti-

mal choice of sampling strategy is the L2 norm of the

function f .

Multiple importance sampling. Multiple Impor-

tance Sampling (MIS) is a technique that combines

multiple sampling strategies with associated weight-

ings, unlike importance sampling which relies on a

single strategy. This approach allows for a more ver-

satile gradient estimation. The MIS Monte Carlo es-

timator, denoted as ⟨F⟩MIS, is calculated by summing



over all samples drawn independently for each strat-

egy, and then using a weighted estimator. The equa-

tion for ⟨F⟩MIS is given by:

⟨F⟩MIS =
J

∑
j=1

n j

∑
i=1

w j(xi j)
f (xi j)

n j p j(xi j)
(11)

Here, xi j represents the ith sample from the jth

technique, w j(x) is a weighting function such that

f (x) ̸= 0⇒∑J
j=1 w j(x) = 1, and p j(x) = 0⇒w j(x) =

0. J is the number of sampling techniques, and n j is

the number of samples generated by the jth technique.

The variance of a Monte Carlo estimator using MIS,

denoted as Var[⟨F⟩MIS], can be expressed as:

Var[⟨F⟩MIS] =
J

∑
j=1

∫
D

w j(x)
2 f (x)2

n j p j(x)
dx−

J

∑
j=1

1

n j

⟨w j, f ⟩2

(12)

The balance heuristic Veach (1997) is the most

commonly used MIS heuristic. It sets the weight of

the samples from each technique according to the fol-

lowing equation:

w j(xi) =
n j p j(xi)

∑J
k=1 nk pk(xi)

(13)

This weighting strategy effectively mitigates the

impact of events with low probability when samples

are drawn from a low-probability distribution. It pre-

vents a large increase in the contribution of such

events in the Monte Carlo estimator (11) where the

function value would be divided by a very low value.

The balance heuristic compensates for this and avoids

extreme cases. Overall, this weighting strategy in-

creases the robustness of the importance sampling es-

timator, but it is limited by its independence from the

function value.

Optimal weighting. Following the discussion

in Section 5, it can also be deduced from Eqs. (6)

and (11) that ⟨F⟩OMIS = ∑J
j=1 α j. Given a set of

probability distribution functions p1, . . . , pJ , we can

formulate the optimal MIS solver as Algorithm 3.

WWW i j represents the vector containing the balance

weight (13) w.r.t. the J sampling techniques and the

normalization factor S(xi j) = ∑J
k=1 nk pk(xi j).

The algorithm proceeds through three key stages.

The first stage involves initializing the linear system

defined in Eq. (7) (line 1). The second stage itera-

tively updates the system for each drawn data sam-

ple (lines 5-6). Upon completion of this process, the

matrix AAA and vector bbb provide Monte Carlo approx-

imations of the quantities specified in Eq. (7). The

third and final stage involve solving the linear system

Algorithm 3 Optimal multiple importance sampling

solver.

1: ⟨AAA⟩ ← 0J×J ,⟨bbb⟩ ← 0J

2: for t← 1 to T

3: for j← 1 to J

4: {xi j}
n j

i=1← draw n j samples from technique

p j

5:

6: ⟨AAA⟩ ← ⟨AAA⟩+∑J
j=1 ∑

n j

i=1 WWW i jWWW
T
i j

7: ⟨bbb⟩ ← ⟨bbb⟩+∑J
j=1 ∑

n j

i=1 f (xi j)WWW i j/S(xi j)
8:

9: ⟨ααα⟩ ← solve linear system ⟨AAA⟩⟨ααα⟩= ⟨bbb⟩
10: return ∑N

j=1⟨ααα jjj⟩

to obtain the vector ααα (line 7). The estimated value of

⟨F⟩oMIS is then returned.

It can be noted that the linear system size scales

with the number of sampling techniques. More im-

portantly each sampling technique needs to be sam-

pled in order create a linear system possible to solve.

The number a sample of each technique does not have

to be the same but requires to be fixed at the start of

the algorithm. Also the presented algorithm works

for a scalar value function. In the case of multivari-

ate function, multiple contribution vector bbb need to be

constructed (one per parameter) and the linear system

needs to be solved for each.

C Algorithm details

This section presents the two initialization subroutine

for Algorithm 1 and Algorithm 2. The role of the

methods is to run a first epoch in a classical SGD

loop in order to process every data once. For each

data the importance metric is reported into the mem-

ory q and returned with the current model parameters.

This approach avoids computing the importance for

all data without benefiting from the required forward

step computed.

D Cross-entropy loss gradient

Machine learning frameworks take data x as input,

perform matrix multiplication with weights and bi-

ases added. The output layer is then fed to the softmax

function to obtain values s that are fed to the loss func-

tion. y represents the target values. We focus on the

categorical cross-entropy loss function for the classi-



Algorithm 4 SGD-based initialization of persistent

per-data importance q in Algorithm 1.

1: function INITIALIZE(x,y,Ω,θ,B)

2: for t← 1 to |Ω|/B

3: x,y←{xi,yi}
t·B+1
i=(t−1)·B+1

4: l(x)← L(m(x,θ),y)
5: ∇l(x)← Backpropagate(l(x))
6: ⟨∇Lθ⟩(x)← ∇l(x)/B ← Eq. (3)

7: θ← θ−η⟨∇Lθ⟩(x) ← Eq. (2)

8: q(x)←
∥

∥

∥

∂L(x)
∂m(x,θ)

∥

∥

∥

9:

10: return q,θ

Algorithm 5 Subroutine for initialization in Algo-

rithm 2

1: function INITIALIZEMIS(x,y,Ω,θ,B)

2: Initialize qqq in a classical SGD loop

3: for t← 1 to |Ω|/B

4: x,y←{xi,yi}
t·B+1
i=(t−1)·B+1

5: See all samples in the first epoch

6: l(x)← L(m(x,θ),y)
7: ∇l(x)← Backpropagate(l(x))
8: ⟨∇Lθ⟩(x)← ∇l(x)/B ← Eq. (3)

9: θ← θ−η⟨∇Lθ⟩(x) ← Eq. (2)

10: qqq(x)← ∂L(x)
∂m(x,θ)

11:

12: return qqq,θ

fication problem (with J categories) given by:

Lcross-ent =−∑
i

yi logsi, si =
exp(m(xi,θ)l)

∑J
l exp(m(xi,θ)l)

.

(14)

For backpropagation, we need to calculate the deriva-

tive of the logs term w.r.t. the weighted input z of the

output layer. We can easily derive the derivative of

Algorithm 6 Subroutine for cross entropy loss impor-

tance metric

1: xi = data sample, yi = class index of xi

2: function IMPORTANCE(xi,yi)
3: s← exp(m(xi,θ))/∑J

k=1 exp(m(xi,θ)k) ← Eq.14

4: q← ∑J
j=1 s j−1 j=yi

← Eq.16

5: return q

the loss from first principles as shown below:

∂Lcross-ent

∂m(xi,θ) j

=−
∂

∂m(xi,θ) j

(

J

∑
i

yi logsi

)

=−
J

∑
i

yi

∂

∂m(xi,θ) j

logsi

=−
J

∑
i

yi

si

∂si

∂m(xi,θ) j

=−
J

∑
i

yi

si

si · (1{i == j}− s j)

=
J

∑
i

yi · s j−
J

∑
i

yi · (1{i == j})

= s j

J

∑
i

yi− y j = s j− y j

(15)

The partial derivative of the cross-entropy loss func-

tion w.r.t. output layer parameters has the form:

∂Lcross-ent

∂m(xi,θ) j

= s j− y j (16)

For classification tasks, we directly use this ana-

lytic form of the derivative and compute it’s norm as

weights for adaptive and importance sampling.

E Importance momentum

Updating the persistent per-sample importance q di-

rectly sometime leads to a sudden decrease of accu-

racy during training. To make the training process

more stable, we update q by linearly interpolating the

importance at the previous and current steps:

q(x) = α ·qprev(x)+(1−α) ·q(x) (17)

where α is a constant for all data samples. In prac-

tice, we use α ∈ {0.0,0.1,0.2,0.3} as it gives the

best trade-off between importance update and stabil-

ity. This can be seen as a momentum evolution of the

per-sample importance to avoid high variation. Utiliz-

ing an exponential moving average to update the im-

portance metric prevents the incorporation of outlier

values. This is particularly beneficial in noisy setups,

like situations with a high number of class or a low

total number of data.



F Additional results

This section provides additional results, including an

ablation study as shown in Fig. 9 for linear-system

momentum used in Algorithm 2 and results of our

adaptive sampling method. Figs. 6 and 9 demonstrate

that classical SGD, DLIS and Our IS work similarly

with and without momentum. Our OMIS outperforms

other methods in both cases.

Figures 8, 10 and 11 show that our adaptive sam-

pling variant (our AS) can achieve better results than

our IS or our OMIS in practice. Our AS is a heuris-

tic and we leave its theoretical formulation as future

work.
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Figure 8: We compare loss for the MNIST dataset between
the resampling algorithm by Katharopoulos and Fleuret
(2018) (DLIS) and our algorithm. At equal epochs, DLIS
works better than both classical and resampling SGD. How-
ever, at equal time, the resampling cost is too high, making
DLIS even slower than standard SGD.
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Figure 9: Ablation study on point-cloud classification us-
ing linear-system momentum as described in Algorithm 2
for baselines represented as dashed lines. Our OMIS still
outperforms other baselines at equal epochs, similar to the
results shown in Fig. 6.
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Figure 10: Comparisons on CIFAR-10 using Vision Trans-
former (ViT) Dosovitskiy et al. (2020). The results show
our importance sampling scheme (Our IS) and the adaptive
sampling variant (Our AS) can improve over classical SGD,
LOW Santiago et al. (2021) and DLIS Katharopoulos and
Fleuret (2018) on modern transformer architecture.
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Figure 11: On CIFAR-100 classification dataset, instead of
comparing the DLIS resampling algorithm, we use DLIS
importance in our Algorithm 1. We display zoom-in of the
end of the curves to highlight the differences. At equal
epochs (left), our methods (Our IS & Our AS) show im-
provements compared to LOW Santiago et al. (2021) and
DLIS weights. At equal time (right), LOW and the DLIS
weights takes longer to converge. Overall our approach
shows faster convergence with lower importance computa-
tion.


