To appear in the IEEE Symposium on Interactive Ray Tracing 2008

RTfact: Generic Concepts for Flexible and High Performance Ray Tracing

lliyan Georgiev *
University of Saarland

Philipp Slusallek
DFKI Saarbriicken
University of Saarland

Figure 1: A volume data set, a polygonal scene, and a point cloud rendered using our generic ray tracing library.

ABSTRACT

Thanks to more than a decade of research and the fast evolution
of computer hardware, ray tracing is likely to become a commod-
ity choice for adding complex lighting effects to real-time render-
ing engines. Nonetheless, interactive ray tracing research has been
mostly concentrated on few specific combinations of data structures
and algorithms. In this paper we present RTfact — an attempt to
bring the different aspects of ray tracing together in a component
oriented, generic, and portable way, without sacrificing the perfor-
mance benefits of hand-tuned single-purpose implementations. RT-
fact is a template library consisting of packet-centric components
combined into an efficient ray tracing framework. Our generic de-
sign approach with loosely coupled algorithms and data structures
allows for easy integration of new algorithms with maximum run-
time performance, while leveraging as much of the existing code
base as possible. The efficiency of templates allows us to achieve
fine component granularity and to incorporate a flexible physically-
based surface shading model, which enables exploitation of ray co-
herence. As a proof of concept we apply the library to a variety of
rendering tasks and demonstrate its ability to deliver performance
equal to currently existing optimized implementations.

Index Terms: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1 INTRODUCTION

Ray tracing is well known as a general and flexible rendering al-
gorithm capable of simulating physically-based lighting, but it has
also been famous for its high computational requirements. The
recent developments of highly optimized packet ray casting al-
gorithms and the advances in hardware have allowed ray tracing
to achieve real-time performance. Since the necessary computing
power became available, research has focused on raw ray tracing
performance on desktop machines. In order to achieve optimal
performance, some interactive systems had to compromise flexi-
bility [24, 5], remaining fast only in specific configurations of algo-
rithms and data structures. Others have provided certain degree of

*e-mail: georgiev@cs.uni-sb.de
fe-mail: slusallek @cs.uni-sb.de

functional freedom exposed through custom application program-
ming interfaces (APIs) [7, 4], but relied on fixed rendering pipelines
and suffered from the run-time overhead of virtual polymorphism.

RTfact is inspired by the need of a modern multi-purpose real-
time ray tracer prototyping library, which provides maximum per-
formance on the latest generation of CPUs without compromising
flexibility. Our goal is not to deliver a self-contained rendering sys-
tem, but to create a flexible and extensible environment for testing
and implementing custom ray tracing-based solutions. We aim at
combining the flexibility of an off-line rendering system with the
performance of modern ray tracing techniques. Furthermore, we
separate ray tracing algorithms from data structures and redefine
the design of ray tracing infrastructure in terms of generic program-
ming. This allows us to simultaneously achieve higher reusability,
composability, and efficiency.

1.1 Overview

The versatility of ray tracing as a visibility sampling technique in
combination with modern hardware and coherent ray traversal and
intersection algorithms impose certain challenges on the design of a
real-time rendering system. These include the choice of supported
functionality and the ease of adapting the rendering system to the
particular needs of applications. A particular application, for ex-
ample, might need to combine different acceleration structures, tra-
versed with ray packets of different size, and use them in different
contexts (e.g. for rendering, collision detection, object interaction).
Thus, a modern ray tracing framework should be flexible enough
to allow such freedom and to also deliver the best possible perfor-
mance for various configurations of algorithms and data structures.

We do not try to give a one-size-fits-all solution, but take a more
general design approach instead. We build a generic ray tracing
library consisting of multiple levels of abstractions for both algo-
rithms and data structures. Starting from basic data types for data
parallel computation, we incrementally augment the library with
functionality in the form of generic composable components. We
do not fix a single pipeline, but instead provide the building blocks
and a framework for combining them. Employing the full power of
C++ templates, it is then possible within our framework, for exam-
ple, to implement a single generic triangle intersection algorithm,
handling ray packets of different size, nature, and common origin

To appear in the IEEE Symposium on Interactive Ray Tracing 2008

properties. We let the compiler generate optimized code for each
specific ray packet size and type used.

Compile-time dependency resolution and template instantiation
not only enable low-level optimization by modern compilers, but
also allow special case code to be directly embedded into a generic
algorithm, without the need of virtual functions and other complex
control flow. Thus, no unnecessary run-time overhead is imposed.

RTfact employs a physically-based shading model, which de-
couples surface shading from visibility computations and light in-
tegration. This separation facilitates code reuse and enables better
exploitation of ray coherence.

In the remainder of this paper we describe the design of RTfact.
Focusing on flexibility and performance, our thread-aware design is
orthogonal to higher level parallelization schemes and APIs, which
can be easily implemented on top as layers between the core library
and user applications. We motivate the decisions made throughout
designing and demonstrate a prototype implementation running on
various operating systems for different visualization tasks.

2 EVOLUTION OF INTERACTIVE RAY TRACING

Accelerating ray tracing for use in interactive rendering applica-
tions has been a long standing goal for computer graphics research.

The first interactive ray tracing systems ran on large supercom-
puters [12, 15, 16]. They traced a single ray at a time and exploited
the inherent parallelism of ray tracing by assigning pixel tiles to dif-
ferent processors. Wald et al. [24] first demonstrated interactive ray
tracing on desktop PCs using SIMD packet ray tracing and cluster-
ing machines using commodity networks.

State-of-the-art ray casting algorithms exploit ray bundle proper-
ties to efficiently amortize acceleration structure traversal and prim-
itive intersection costs among many rays [20, 23]. Such algorithms
have enabled ray tracing to perform competitively to hardware ras-
terization in small game environments [5].

Modern processors provide more and more computational power
as their design is shifting towards parallelism on two levels — mul-
tiple processing cores and explicit data parallelism. Current CPUs
accommodate up to four separate cores, each implementing the SSE
instruction set, while modern GPUs utilize single instruction multi-
ple thread (SIMT) data parallelism on hundreds of scalar cores [13].
Recent ray tracing implementations on specialized hardware in-
clude the CELL processor [3] and GPUs [18, 9].

Massive parallelism and increased hardware programmability
make it very likely that future rendering engines will be almost en-
tirely implemented in software [10]. This implicates that flexible
interactive systems which can deliver ray tracing to application de-
velopers and thus to end users will become of primary importance.

2.1 Related Work

Star-Ray [16] was the first flexible ray tracing system to achieve
interactive performance. It provided an extendable object-oriented
programming interface and was later adapted to cluster systems [6].
Star-Ray used brute-force single ray tracing algorithms, without
employing ray packet algorithms which were developed later.
Dietrich et al. [7] proposed the OpenRT API which aimed at pro-
viding a complete interactive ray tracing solution on a cluster of
PCs. The base API provided a scene description interface close to
OpenGL, while an object-oriented shading API allowed for writ-
ing custom shaders for cameras, materials, lights, and the rendering
loop. The shading API operated on single rays only because it was
too complicated for the end user to write SIMD shaders. Thus,
industrial implementations of OpenRT were restricted to shading
and single secondary rays, while only the core ray tracer was hand-
coded in SSE, which reduced the overall rendering performance.
The Manta interactive ray tracing system [4] aims at delivering
both flexibility and performance, while scaling to a large number
of processors. In this system, a configurable parallel pipeline takes

care of task scheduling and synchronization, while rendering tasks
asynchronously traverse a modular stack, which balances the work-
load of each thread. Flexibility is achieved by providing callbacks
and abstract interfaces for different components in the pipeline and
the rendering stack. The system focuses on massive parallelism
and its single thread performance is lower than optimized imple-
mentations, because of the overhead of virtual interfaces and wide
packet assumptions. Manta is also a complete rendering system
which makes it hard to be integrated with other applications.

Recently, Parker et al. [14] proposed RTSL as a domain-specific
language (DSL) for extending ray tracing systems. RTSL provides
a simple and intuitive syntax for implementing custom camera,
primitive, light, and material shaders, which can be used in mul-
tiple rendering systems. A specialized compiler is used to produce
optimized SIMD code from scalar RTSL code. In order to retain
a simple syntax, however, RTSL does not allow for controlling the
rendering loop or writing acceleration structures, for which support
from the underlying system is required.

Stoll et al. [22] proposed Razor as a software architecture for
distribution ray tracing of dynamic scenes. The system employs co-
herent ray casting algorithms and decouples visibility computations
from surface shading, in order to avoid redundant shading compu-
tations. Similarly to Manta, Razor aims at providing a complete
rendering solution, but is mainly designed for subdivision surface
rendering and is too slow compared to other systems.

The PBRT system [17] has proved to be very flexible and is
widely used in academia. It provides fine-grained and modular
interfaces for physically based rendering, employing a decoupled
surface shading model. The system does not aim at performance,
but on physical realism and flexibility. It traces single rays and its
fine-grained infrastructure imposes high overhead, which keeps its
performance far from interactive.

3 GENERAL DESIGN CONSIDERATIONS

Prior ray tracing systems have always made design decisions trad-
ing between flexibility and performance. Extreme examples are
the very flexible but slow PBRT and the very efficient but highly
specialized Arauna [5]. Additionally, all systems have provided ei-
ther full application-centric or rendering pipeline-specific solutions.
Our goal is to build a generic library, useful in various application
contexts and producing the fastest code for a specific problem.

In general, there are two approaches for achieving flexibility in a
rendering system. The first and most commonly taken one is to use
a general purpose language and object-oriented design. The second
option is to design a domain-specific language (like RTSL) with a
syntax suitable for our custom needs. It turns out there is another
option, which we will explore in this paper.

3.1 Object-Oriented Design

All ray tracing systems, that we know of, have used object-oriented
design with abstract virtual interfaces to achieve flexibility and
polymorphic behavior of different components, e.g. for invoking
shaders. This approach has the advantage of being well studied and
allows software components to be connected at run-time, e.g. using
plug-ins. This late binding facilitates decoupling in the sense that
different components can be compiled more or less independently.

Unfortunately, the flexibility of dynamic polymorphism comes at
a performance price. Late binding disables function inlining and in-
terprocedural optimizations otherwise automatically performed by
the compiler. Furthermore, each virtual function call imposes ex-
ecution overhead, even if the provided flexibility is not required at
run time. This implies that a fine-grained object hierarchy can seri-
ously degrade the application’s performance. That is why previous
interactive systems have compromised both flexibility and perfor-
mance, achieving neither the generality of offline rendering systems
nor the speed of hand-tuned implementations.

To appear in the IEEE Symposium on Interactive Ray Tracing 2008

Another deficiency of object-oriented design is that it encour-
ages coupling algorithms to data structures. Thus, previous systems
have provided acceleration structure classes together with traversal
algorithms. This reduces component reuse, as different algorithms
cannot be applied on the same data structures and vice versa. The
problem can be reduced by finer grained abstractions, but which
bring additional run-time overhead. A purely object-oriented de-
sign approach is therefore not an option for us, because it cannot
deliver both flexibility and performance.

3.2 Domain-Specific Language

Another option for a flexible rendering system would be to provide
a domain-specific language for writing custom components. The
language would provide an intuitive and convenient syntax, while
at the same time allowing us to have more control over the low-
level code generation via a specialized compiler. However, if we
allow expressing ray tracing algorithms and data structures, the lan-
guage will become more complex, eventually converging to a gen-
eral purpose language and losing its nice properties. Furthermore,
we would have to build complex infrastructure around the compiler
from scratch.

DSLs are convenient mostly because of their simple syntax,
which makes them useful only for small and isolated problems.
We believe that ray tracing is a tool which should also be used for
applications other than rendering, such as collision detection. A
context-dependent DSL would make such integration much harder.
That is why we chose to build a context-free library entirely in a
general purpose language and provide convenient abstractions for
implementing reusable algorithms and data structures.

3.3 Generic Programming Approach

C++ provides the facilities for a third design paradigm — generic
programming. Generic programming [11] is a software method-
ology for developing reusable and efficient software libraries. It
advocates definition of algorithms at an abstract level, completely
independent of the underlying data representation, in order to in-
crease component composability and code reuse, while maintaining
efficiency. The C++ Standard Template Library (STL) was the first
widely used library to adopt these concepts.

While non-generic libraries use interfaces operating on prede-
termined data types, generic algorithms define the minimal require-
ments from the data types they are instantiated with. Thus, a generic
algorithm can be used with any type meeting its requirements.

A concept in generic programming is namely the set of require-
ments of an algorithm. For example, a type is comparable if it
defines a comparison operator, which can be used by a generic al-
gorithm to order elements of this type. A type that meets these
requirements is said to model the concept.

Generic algorithms can be expressed in C++ using class and
function templates. Since templates are instantiated at compile
time, type dependencies are resolved without the overhead of run-
time support code, such as virtual function calls. Static binding
also enables inline function expansion and interprocedural opti-
mizations. Templates can also have specializations for specific data
types. This allows special case code to be resolved at compile time,
without the need of separate code paths for the whole program.

In C++ concepts can be described with pseudosignatures, which
are pseudo class declarations specifying a set of requirements of an
algorithm. They can be extracted from an actual implementation of
a type that meets these requirements. Concepts are thus analogous
to abstract interfaces in the object-oriented design, whereas models
correspond to classes implementing these interfaces. However, the
weaker requirements of concepts increase composability and allows
easier integration of different software libraries.

Examples for successful generic libraries are Matrix Template
Library [21], Boost [1], and Intel’s Threading Building Blocks [19].

Application or API

Multi-threading

Rendering Building
Ray tracing Scene
management
SIMD primitives

Figure 2: The multi-layer architecture of RTfact. The SIMD primitives
form the basis for other generic components which are layered on
top. Scene management and rendering are independent from each
other and are connected through the ray tracing components. Thread
management can be layered on top of the core components, or inte-
grated into the application, which itself can be an API backend.

4 SOFTWARE ARCHITECTURE

The generic programming paradigms match the goals of RTfact
well. C++ templates provide abstraction and composability while
retaining the opportunity for optimal performance and compiler op-
timization. This implicates that we can achieve fine abstraction
granularity, yet delivering the performance of hand-tuned imple-
mentations.

Performance on modern hardware is tightly coupled with paral-
lelism. While asynchronous thread execution does have some im-
pact on the low-level design of a ray tracing system, algorithms and
data structures need to be updated or even developed from scratch in
order to take full advantage of explicit data-level parallelism. Such
low-level optimizations are crucial for the overall performance of
modern ray tracing algorithms, but imply unintuitive data layout
and programming model. Our framework provides a set of generic
packet data containers for convenient and efficient SIMD computa-
tion. Such low-level abstractions will become even more relevant,
as future hardware will support 8-wide [8] and even 16-wide (In-
tel’s Larrabee [2], not yet officially announced) SIMD operations.

The algorithms in RTfact operate entirely on packet data, in or-
der to take full advantage of modern packet ray tracing techniques.
Packet concepts provide a common interface independent of the
size and internal organization of the packet. Thus, the packet size
is a parameter to every generic algorithm that operates on rays. As
aresult, algorithms can handle packets of different sizes simultane-
ously and can have manually specialized versions for specific sizes,
which are automatically resolved and optimized by the compiler.

Our general design objectives are to decouple algorithms from
data representation and to separate rendering from ray tracing and
scene management. The library consists of five main groups of
components: SIMD primitives (Section 4.1), ray tracing (Sec-
tion 4.2), structure building, scene management (Section 4.3), and
rendering (Section 4.4).

Figure 2 illustrates the architecture of RTfact. The application
has direct access to the scene management and ray tracing compo-
nents and can use them for rendering and custom tasks. The compo-
nents of the library are thread-aware but do not provide any thread
management functionality, as this can be very application-specific.

4.1 Generic SIMD Computation with Packets

The basis of our library is formed by a collection of generic types
for SIMD computation. These packets, as we call them, are fixed-
sized containers of values and form the basic arithmetic types of the
library, along with build-in types like float, integer, etc. We define
four basic packet types, all parameterized by size.

To appear in the IEEE Symposium on Interactive Ray Tracing 2008

Packet<size, type> represents an ordered set of values.
Currently, type can be float or int.

Vec3f<size> represents a three-component float vector
packet with a structure-of-packets layout.

PacketMask<size> is an ordered set of booleans, storing
the result of a comparison operation between two Packets or
Vec3fs, and defines a conditional b1end operation, which blends
two Packets or Vec3fs according to the the stored mask.

BitMask<size> is an ordered set of bits.

All four classes simultaneously model three concepts — Value,
ValueContainer, and ContainerContainer.

The Value<type> concept considers the packet a single entity
and defines all arithmetic operations defined on type (addition,
multiplication, bit-wise AND, etc.). These operations are applied
component-wise to all values in the corresponding packet.

ValueContainer<type> defines indexing operators for ac-
cessing individual values stored in the packet.

ContainerContainer<packet_type> defines indexing
operators for accessing packets’ sub-containers. A sub-container
is of type packet_type with a size depending on the size of the
parent container and the SIMD width of the underlying architecture.

Packets are internally implemented as SIMD arrays. On SSE-
compatible processors, the sub-containers of 1- and 4-sized packets
are the packets themselves, whereas for larger packets this size is 4.

As all four packet classes model each of these concepts, they
have a three-fold nature. However, most algorithms use the
ContainerContainer context. This is because series of op-
erations on a large packet are more cache efficient to be performed
for each sub-container (SSE packet) sequentially, rather than per-
forming the operations one by one on the entire packet.

While currently RTfact supports SSE only, the model itself does
not have restrictions on the instruction set. Thus, support for the
Intel AVX [8] can be easily added. In fact, abstractions over native
SIMD operations improve portability — when adding support for
wider operations, updates are needed only for code using horizontal
operations defined only for 4-sized packets, such as shuffling.

As packets of different size are actually different C++ types, they
are subject to specialization. Our implementation has specializa-
tions for packets of size 1 and 4. The most notable is the special-
ization for Vec3£<1>, which is internally implemented in SSE.
These peculiarities are well hidden behind the three main concepts,
but specialized versions of algorithms can take advantage of the
additional functionality and internal layout of specialized packets.
Listing 1 illustrates some common packet operations.

4.1.1 Ray Packets

RTfact does not distinguish between individual rays and ray pack-
ets. Rays are simply packet types aggregating other packets:

template<unsigned int size>
struct RayPacket {
Vec3f<size> org, dir;
Packet<size, float> tMin, tMax;
Vi

Thus, a single ray is simply a ray packet of size 1.

Template instantiation adds two desirable properties to ray pack-
ets. First, memory for ray packets is allocated at compile time. This
is relevant to performance, as many rays are created and destroyed
each frame. Second, ray packets of different sizes can exist simul-
taneously within the system — a feature missing in other interactive
ray tracing systems. This allows us to efficiently trace the same or
different acceleration structures with packets of different sizes.

Our implementation uses extended ray packets with information
about active rays, corner rays, and bounding planes, enabling flexi-
ble and efficient frustum-based traversal and intersection. However,
we do not store intersection data inside ray packets, as intersection
structure types are defined by intersectors (see Section 4.2.2).

//specialized packets have more convenient constructors
Vec3f<1l> vl1(0.1, 0.2, 0.3);

Packet<4, float> p4 (1, 2, 3, 4);

//shuffling (only for 4-sized packets), pds == (1,1,2,4)
Packet<4, float> p4s = p4.shuffle<0,0,1,3>();
//replication of values (i.e. l-sized packets)

Vec3f<4> v4 = Vec3f<d4>::replicate(vl);

//sub-container replication (shown for 64-sized packets)
Vec3f<64> dir = Vec3f<64>::replicate(v4);

Vec3f<64> color, offset = ..., normal = ...;

Packet<64, float> dn;

PacketMask<64> mask;

BitMask<64> bitMask;

//scalar-like packet operations (Value concept)

dn = Dot (dir + offset, normal);

mask = (dn > Packet<64, float>::C_0());
color = mask.blend(Vec3f<64>::C_1_0_0(), //red constant
Vec3£<64>::C_0_0_0());//black constant

bitMask = mask.getBitMask();
//compoinent-wise packet operations (ValueContainer)
for(int i=0; 1 < 64; i++) {
dn[i] = Dot (dir[i] + offset[i], normall[i]);
mask[i] = (dn[i] > 0);
color.set (i, mask[i] ? Vec3f<l>::C_1_0_0¢()
Vec3f<1>::C_0_0_0¢());
bitMask.set (i, mask[i]); }
//container-wise packet operations (ContainerContainer)
for(int i1=0; 1 < Packet<64,float>::CONTAINER_COUNT; i++) {

dn (i) = Dot (dir (i) + offset (i), normal(i));

mask (1) = (dn (i) > Packet<64,float>::Container::C_0());

color (i) = mask (i) .blend(Vec3f<64>::Container::C_1_0_0¢(),
0_0_00));

o
Vec3f<64>::Container::C

bitMask.setContainer (i, mask (i) .getBitMask()); }
Listing 1: SIMD computation with packets. Most binary operations
(such as addition) can be performed in three different ways.

4.2 Ray Tracing Components

Packets provide us with the basis on which we build generic ray
tracing algorithms. RTfact makes a clear distinction between data
structures and algorithms that operate on them. Building and
traversing an acceleration structure are independent from its actual
type and implementation, as long as it provides the necessary func-
tionality for storing and accessing data. This allows us to apply dif-
ferent algorithms on the same or different acceleration structures.

4.2.1 Primitives and Acceleration Structures

In RTfact, all ray tracing structures model the very general
Primitive concept. These include geometric primitives, com-
pound primitives, and acceleration structures. However, they do
not directly provide intersection functionality, which is instead pro-
vided by Intersectors. For applications which require simul-
taneous support for different primitives, an ID to a run-time poly-
morphic intersector can be stored with each structure. This allows
us to avoid data-dependent indirect function calls completely or add
them only when required and at the appropriate granularity.

We design acceleration structures to be independent of the types
of objects they aggregate. Such types can be not only geometric
primitives, but any other type (e.g. Photon). This also allows
acceleration structures of same or different types to be nested.

Listing 2 shows a concept for a kd-tree. The concept only de-
fines building and traversing functionality and completely hides the
details about internal node representation, and provides an itera-
tor interface similar to STL containers. It also does not define any
creation and initialization functionality, as this is specific to the im-
plementation of the structure and is controlled by the application.

4.2.2 Intersectors

Given a ray packet and a primitive, Intersectors return an in-
tersection structure. Similarly to PBRT, we design primitive and

To appear in the IEEE Symposium on Interactive Ray Tracing 2008

template<class Element>

class KdTree

public:
class NodeIterator;

public Primitive {

class ElementIterator;
// interface for structure building
void createlInnerNode (NodelIterator node,
int axis, float splitValue);
template<class Iterator>
void createLeaf (NodelIterator leaf, const BBox& bounds,
Iterator begin, Iterator end);
// interface for structure traversal
NodeIterator getRoot () const;
NodeIterator getLeftChild(NodeIterator node) const;
NodeIterator getRightChild(NodeIterator node) const;
int getSplitAxis (NodeIterator node) const;
float getSplitValue (NodeIterator node) const;
std::pair<ElementIterator, ElementIterator>
getElements (NodeIterator leaf) const;
}i
Listing 2: A psudosignature of a generic kd-tree working with STL-
like iterators. A BVH concept would be similar.

acceleration structure intersectors to have a unified interface, which
allows intersectors to be nested consistently with the acceleration
structures. This gives us the ability to compose and traverse arbi-
trary deep acceleration structure hierarchies as easy as combining
templates:

// data structure

BVH<KdTree<Triangle>> hierarchy;

// corresponding intersector

BVHIntersector<KdTreelntersector<
SimpleTrianglelIntersector>> intersector;

In order to ensure correct nesting, every intersector defines the
type of the returned intersection structure. Primitive intersec-
tors return structures containing references to primitives and in-
tersection data. Acceleration structure intersectors, such as the
KdTreelIntersector, simply reuse the intersection type of the
nested intersector. Intersection structures of instance intersectors
would inherit the nested intersection structure and additionally store
a reference to the intersected instance.

Some applications require tighter integration of acceleration
structures and primitives. For example, a kd-tree for subdivision
surfaces might incorporate the geometry representation. In such
case, the acceleration structure and primitive intersectors can also
be merged accordingly. In order to facilitate component reuse, our
design only encourages but does not require separation.

Intersectors implement ray tracing algorithms and this is where
generic programming with templates can show its greatest poten-
tial. We add two more template parameters to intersection routines
(along with the size of the packet), which enable special case code.
These parameters are flags for packets with common origin and
what intersection data has to be computed, e.g. whether intersec-
tion normals or partial derivatives are needed. As a result, we can
bring component reuse to an extreme level by allowing an inter-
sector to have a single generic implementation. The intersection
routine can be independent of the implementation of the acceler-
ation structure, the type of objects it aggregates, the nature of the
ray packet, its size and ray origin properties, and the shading data
needed. Listing 3 illustrates such a routine for a kd-tree intersector.

4.3 Structure Building and Scene Management

As with algorithms and acceleration structures, the type and orga-
nization of the scene data can vary among applications. We define
a Scene concept which provides basic functionality for querying

materials and intersectors. A BasicScene concept in addition
defines flat geometry and light source lists, while the others can
define functionality for managing more complex scene graphs.

Acceleration structures are built by Builders. They operate on
bounding boxes and can thus build structures over any object type
that has bounds. During building, object bounds can be clipped to
nodes’ bounds using either a provided object type-specific clipper
or a simple default box splitter. However, scene management and
acceleration structure building are not the main focus in this article
and due to space limitations we omit further details.

template<class ElemIsect> //nested element intersector
template<int intersDataMask, //intersection data needed
bool commonOrg,
unsigned int size, //size of the ray packet
class KdTree>
void KdTreelIntersector<ElemIsect>::intersect (
RayPacket<size>& rayPacket,//the actual rays
KdTree& tree, //the actual kd-tree
ElemIsect::Intersection<size>& r)//intersection defined
{ // by the nested intersector
typedef BitMask<size> t_BitMask;
typedef Packet<size, float> t_Packet;
typedef typename t_Packet::Container t_PContainer;

//common ray origin?

//models the KdTree concept

/+ omitted: initialize traversal =/
KdTree: :Nodelterator node = tree.getRoot ();
int splitDim; // split dimension (3 means leaf node)
while (true) {
while ((splitDim = tree.getSplitAxis(node)) != 3) {
t_PContainer splitValue =
t_PContainer::replicate (tree.getSplitValue (node));
t_BitMask nearChildMask, farChildMask;
t_PContainer tSplitFactor;
if (commonOrg) // compile-time constant decision
tSplitFactor = splitValue -
rayPacket.org(0) .get (splitDimension) ;

for (int 1=0;i<RayPacket<size>::CONTAINER_COUNT; ++1) {
if (!commonOrg) // compile-time constant decision
tSplitFactor = splitValue -
rayPacket.org (i) .get (splitDimension) ;

const t_PContainer tSplit = tSplitFactor =*
rayPacket.invDir (i) .get (splitDimension) ;
nearChildMask.setContainer (
i, (tSplit (i) > currentTMax(i)).getIntMask());
farChildMask.setContainer (
i, (currentTMin(i) > tSplit(i)).getIntMask());
}
/xomitted: get first child from masks and descend =/
}
// a leaf node has been reached
std::pair<KdTree::ElementIterator,
KdTree::ElementIterator> elemIterators =
aTree.getElements (currentIterator);
if (elemIterators.first != elemIterators.second) {
do { //invoke nested intersector for leaf elements
m_inters.intersect<intersDataMask, commonOrg> (
rayPacket, «*(elemIterators.first++), r);
} while(elemIterators.first != elemIterators.second);
//check whether active rays found intersections
terminationMask |= rayActiveMask &
(result.dist <= currentTMax) .getBitMask () ;
if (terminationMask.isTrue()) return;
}

/+ omitted: pop a node from the stack and mask raysx/

}

Listing 3: A generic kd-tree traversal routine. Only the kd-tree data
and the exact rays are passed at run-time. All other parameters are
known at compile time, including a mask specifying what intersection
data is needed.

To appear in the IEEE Symposium on Interactive Ray Tracing 2008

class Material {
public:
template<unsigned int size> //packet size
Vec3f<size> emittance (
Vec3f<size>& w_o,

ShadingData<size>& sh);

//outgoing direction
//hit point,normal,etc.
template<unsigned int size, //packet size
unsigned int bsdfType>//BSDF parts to evaluate

Vec3f<size> evaluate(

Vec3f<size>& w_o, //outgoing direction
Vec3f<size>& w_i,
ShadingData<size>& sh);

//incoming direction
//hit point,normal,etc.

template<unsigned int size, //packet size
unsigned int bsdfType>//BSDF parts to sample
Vec3f<size> sample (
Vec3f<size>& w_o, //outgoing direction
Vec3f<size>& w_iOutput, //incoming direction
ShadingData<size>& sh,

Packet<size, float>& pdfOutput);//sample probability

//hit point,normal,etc.

/* omitted: evaluate() and sample() variants =/
i
Listing 4: A concept for physically-based materials. Materials repre-
sent surface reflection models and are independent from ray tracing.

4.4 Rendering Components

In RTfact, rendering is layered on top of ray tracing and is inde-
pendent from scene management. The application makes the con-
nection between the scene data and rendering components by con-
structing acceleration structures and passing them along with ray
tracing algorithms to a suitably configured rendering pipeline.

4.4.1 Shading Model

Most rendering systems employ an “all-in-one” surface shading
model — shaders are attached to geometry and are executed when-
ever a ray hits a particular surface. They consist of imperative code
that fully defines what computations are performed at a hit point.
This approach has the benefit of being simple to implement and
gives freedom — shaders can shade surfaces in arbitrary ways.

Unfortunately, “all-in-one” surface shading has two major draw-
backs. First, it reduces flexibility — one needs to reimplement a
particular reflectance model for each light simulation algorithm and
vice versa. Furthermore, in a packet-based framework, this surface
shading model by design reduces exploitation of coherence for sec-
ondary rays, as each shader independently handles rays hitting the
surface it is attached to. As a consequence, coherent secondary rays
emerging from different surfaces cannot be traced together.

RTfact supports both traditional shaders as well as a decoupled
physically-based shading model. Similarly to PBRT, we define sur-
face reflection models as Materials and light integration algo-
rithms as Integrators. Materials represent BSDFs and can be
evaluated, sampled, and its emission queried, while Light sources
provide an interface for sampling illumination directions and light
rays. Evaluation and sampling of materials can be performed on
different BSDFs parts (transmission, reflection, specular, etc.) by
optionally providing sample values and obtaining sampling proba-
bilities (Listing 4). Listing 5 illustrates the Integrator concept.

In the context of generic programming, integrators are the algo-
rithms that perform lighting simulation, while materials and light
sources are the data structures that provide the appearance of the
objects in a scene. An evident consequence of this separation is that
all rays during rendering are shot at a central place, namely the light
integration algorithm. This gives integrators the potential to shoot
and regroup rays in arbitrary fashion. In our current implementa-
tion integrators mask out irrelevant rays when sampling materials
and collect the sampled directions. A WhittedIntegrator,

for example, traces separate packets for reflection, refraction, and
shadow rays, which eventually emerge from different surfaces.

For applications that require simultaneous support for different
materials and light sources at run-time, we provide a transparent
virtual function mechanism between the Material and Light
concepts and their models. While the decoupled shading model
can require more virtual function calls than the traditional model
for material evaluation and sampling, this overhead is overcompen-
sated by the ability to trace coherent secondary rays together.

The traditional shading model is implemented by an integrator
that shoots primary rays and calls shaders for the hit points. Individ-
ual shaders then perform the remaining computations themselves.

class Integrator {
public:
template<int size> struct Color;
template<int size, class Sample, class Scene,
class Primitive, class Intersector>
Color<size> eval(
Sample& sample //image sample
RayPacket<size>& rayPacket,//initial ray packet
Primitive& primitive,
Intersector& intersector, //top-level intersector

//top-level primitive
Scene& scene); //shading scene data

}i

Listing 5: Given a ray packet, the integrator evaluates the radiance
flowing back along the rays. The integrator is also responsible for
shooting all rays. Specific implementations are similar to PBRT’s.

template<class PixelSampler, class Integrator>
class RayTracingRenderer : public Renderer {
PixelSampler m_sampler;
Integrator m_integrator;
public:
template<int size, // the size of primary ray packets
class Camera, class Scene, class Primitive,
class Intersector, class Framebuffer>
void render (
Scene& scene, Camera& camera,
Framebuffer& framebuffer, ImageClipRegioné& clip,
Primitive& primitive, Intersectoré& intersector)

PixelSampler::Sample<size> sample;

PixelSampler::Iterator<size> it =
m_sampler.getIterator<size>(clip);

while (it.getNextSample (sample))

{
RayPacket<size> rays = camera.genRay (sample);
Integrator::Color<size> color = m_integrator.eval(

sample, rays, primitive, intersector, scene);

m_sampler.writeColor (sample, color, framebuffer);

}

/+ omitted: preprocess () function for pre-integrationx/
}i
Listing 6: A ray tracing renderer concept. The pipeline defines only
basic control flow and is completely independent from the algorithms
and data structures used for tracing rays and shading.

4.4.2 Rendering Pipelines

The Renderer is a top-level rendering concept which defines ba-
sic functionality for processing image tiles. It connects different
components in a rendering pipeline.

Listing 6 shows an example renderer, which defines a basic ray
tracing pipeline. This renderer makes little assumptions about how
different components are functionally coupled and what types of
data they communicate. For example, in addition to image sam-
ples, the pixel sampler can provide light integration samples to the
integrator by defining its sample type accordingly. The integrator

To appear in the IEEE Symposium on Interactive Ray Tracing 2008

can in turn specialize for this specific type and can also return a
radiance type that additionally contains depth and opacity values.

Integrators can be also specialized for specific acceleration struc-
tures and intersection algorithms. For example a volume integra-
tor can be tightly coupled with a grid acceleration structure, where
shading of rays is performed during grid traversal. This coupling,
however, is completely transparent to the pipeline, as renderers op-
erate on basic concepts only.

We should note at this point that our template infrastructure does
not prohibit virtual polymorphism. For applications that require
simultaneous support for different algorithms and data structures,
components can have internal virtual mechanisms to enable run-
time polymorphic behavior. For example, the Framebuf fer con-
cept, which defines functionality for storing radiance values, can be
modeled by a virtual class that selects at run-time whether values
are written to a network or a screen buffer. The same holds for in-
tersectors supporting multiple geometric primitives. This flexibility
allows us to only pay for the overhead when it is really needed.

5 APPLICATIONS

RTfact can be used in a similar way to other generic libraries, such
as STL. The user includes the desired RTfact headers in his or her
application source files and instantiates the provided data structures
and algorithms in the specific application. The components of the
library are designed to be highly configurable and extensible, so
that the user can chose the appropriate granularity and implement
custom functionality where needed, or even adapt components from
other libraries. For example, one might want to experiment with a
new BVH traversal algorithm and a custom material. In this case,
one would only implement two classes, modeling the corresponding
concepts, and instantiate with them the desired data structures and
algorithms the RTfact library already provides.

We have applied RTfact to several interactive visualization tasks,
such as surface, point-based, and direct volume rendering. For all
these applications we have used the RayTracingRenderer de-
scribed in the previous section. Creating custom rendering configu-
rations then boils down to combining different template classes:

PinholeCamera camera;

OpenGLFrameBuffer fb;

//surface rendering (Fig. 1 middle, 3)

BasicScene<Triangle> scl; //initialization omitted

BVH<Triangle> bvh;

BVHBuilder builder;

builder.build(bvh, scl.prim.begin(), scl.prim.end());

BVHIntersector<PlueckerTriangleIntersector> bvhIsect;

RayTracingRenderer<PixelCenterSampler,
DirectIlluminationIntegrator> rendererl;

rendererl.render<64>(scl, camera, fb, fb.getClipRegion(),

bvh, bvhIsect);

//direct volume rendering (Fig. 1 & 4 left)
BasicScene<DensityPoint> sc2; //initialization omitted
Grid3D<DensityPoint> grid;
VolumeGridIntersector gridIntersector;
RayTracingRenderer<SuperSampler<4>,

//initialization omitted

VolumeIntegrator> renderer2;
renderer2.render<1l>(sc2, camera, fb, fb.getClipRegion(),
grid, gridIntersector);

//level-of-detail point cloud rendering (Fig. 1 & 4 right)
BasicScene<Point> sc3; //initialization omitted
LoDKdTree<Point> kdtree;
LoDKdTreeBuilder builder;
builder.build(kdtree, sc3.prim.begin(), sc3.prim.end());
LoDKdTreeIntersector<PointIntersector> lodKdTreelsect;
RayTracingRenderer<PixelCenterSampler,

PointLoDIntegrator> renderer3;
renderer3.render<16>(sc3, camera, fb, fb.getClipRegion(),

tree, lodKdTreelsect);

SPONZA | CONFERENCE | SODA HALL
OpenRT K 4.5 4.2 5.1
Manta K 4.7 4.2 5.4
RTfact K 6.8 6.4 6.5
Wald et al. [23] B n/a 93 11.1
Manta B 4.5 4.8 5.6
Arauna B 13.2 11.3 n/a
RTfact B 13.1 11.6 11.4

Table 1: Ray tracing performance in frames per second for a 10242
image with simple shading of our implementation in comparison to
other interactive systems. All results except for [23] were gathered
on the single core of a mobile 2.6GHz Core 2 processor using the
same or comparable data structures, intersection algorithms, and
view points. K denotes kd-tree with packet traversal as proposed
by [24], while B denotes BVH packet traversal [23].

The C++ template instantiation mechanism allows multiple render-
ing engines to exist simultaneously in the application, packets of
different size to be traced though different acceleration structures,
and data to be visualized using different rendering algorithms. Fig-
ures 1, 3, and 4 show some scenes rendered with these renderers.

6 PERFORMANCE

We have measured the raw performance of RTfact and compared
it to other interactive systems. Because a direct fair comparison is
very difficult to achieve due to various differences in systems, we
apply the same simplified conditions for all systems and measure
the time for ray casting and simple shading only.

As it can be seen from Table 1, the performance of RTfact
matches the one of Arauna [5]. Arauna is to our knowledge the
fastest open source ray tracer currently available, and uses hard-
coded acceleration structures and SSE algorithms that are manually
tuned for optimal throughput. RTfact is also consistently faster un-
der the same configuration of algorithms and structures than the
other more versatile systems, even though it provides greater flex-
ibility. Since components in our system are configured at compile
time, the compiler can enable all optimizations and produce optimal
code for each combination of algorithms and data structures.

We have tested RTfact on various operating systems (Windows,
Linux, and MacOS) and compilers (MSVC, Intel, and GCC). Sur-
prisingly, modern compilers have matured enough to optimize well
all the templates in our code. We achieved best performance with
the Intel C++ Compiler on all systems. Inspection of the produced
assembly code showed that it managed to best optimize special case
code and loops, making assembly code almost identical to the one
produced from hand-tuned C++ code.

To run our test application on multi-core machines, we have used
Intel’s Threading Building Blocks (TBB) on top of the renderer to
recursively split the image plane and invoke the it for each tile. We
have run tests on up to 16 cores and achieved near-linear scalability.
Note that our library optimizes for single-thread throughput, which
is completely orthogonal to multi-threaded execution. Various par-
allelization schemes can be applied on top of the library to achieve
maximum performance on multi-core hardware.

6.1 Shading Model Improvements

To compare the efficiency of the decoupled and the traditional sur-
face shading models, we have counted the total number of traversed
nodes and intersection tests for shadow rays over an entire frame
using either models. We have run the tests on the CONFERENCE
scene with 36 different materials visible (see Figure 1 middle) most
of which hit by very few rays. Still, the traditional shading model
resulted in traversing about 40% more kd-tree nodes and perform-
ing 25% more intersection tests for the shadow rays.

To appear in the IEEE Symposium on Interactive Ray Tracing 2008

Figure 3: Scenes rendered at a 10242 resolution on a mobile Core
2 Duo processor. Left: CONFERENCE with a mirror and two light
sources (8.2 fps). Right: SPONzA with three light sources (7.3 fps).

Figure 4: Direct volume and point-based rendering. Left: The Skele-
ton dataset. Right: The Asian Dragon model with level of detail.

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented RTfact — a design approach for build-
ing flexible and high-performance interactive ray tracing libraries.
Using generic programming paradigms and standard C++ features,
our implementation achieves high flexibility and fine component
granularity, while maintaining the efficiency of hand-tuned code.

Instead of providing a stand-alone rendering system, RTfact fol-
lows context-free generic design concepts and provides the build-
ing blocks for creating custom ray tracing-based solutions. This
allows components of the library at various granularities to be used
for different tasks and to be easily integrated in custom applica-
tions. Separating ray tracing from rendering and algorithms from
data structures allows us to achieve seamless component integration
and composability not seen in prior interactive systems.

As graphics hardware is moving towards higher programmability
and software implementations, we believe that the generic approach
taken by RTfact will map very well to more restricted development
platforms such as CUDA [13]. We achieve high performance by
putting the pressure on the compiler, thereby avoiding complex run-
time control flow and overhead.

Although RTfact is still in development, it already shows great
potential. We plan to continue extending the coverage of its func-
tionality by providing for example support for collision detection
for physics simulation. In addition, we plan to integrate the library
into a virtual reality system.

RTfact focuses on versatility, flexibility, and performance in its
core components, and its design is orthogonal to binary APIs and
parallelization schemes which could be layered on top of the li-
brary. We advocate generic design as a key to flexibility and effi-
ciency, especially for computationally intensive applications, such
as realtime ray tracing.

ACKNOWLEDGEMENTS

We would like to thank Stefan Popov and Dmitri Rubinstein for the
fruitful discussions during the work on this project. We would also
like to thank Yavor Kaloyanov and Rossen Dimov for implementing
some of the algorithms in the library.

REFERENCES

[1] Boost C++ Libraries. http://www.boost.org.

[2] Ars Technica. Clearing up the Confusion over Intel’s Larrabee.

[3] C.Benthin, I. Wald, M. Scherbaum, and H. Friedrich. Ray Tracing on
the CELL Processor. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing.

[4] J.Bigler, A. Stephens, and S. G. Parker. Design for Parallel Interactive
Ray Tracing Systems. IEEE Symposium on Interactive Ray Tracing,
2006.

[5] J. Bikker. Real-time Ray Tracing through the Eyes of a Game Devel-
oper. [EEE Symposium on Interactive Ray Tracing, 2007.

[6] D. Demarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen. Dis-
tributed Interactive Ray Tracing for Large Volume Visualization. In
Proceedings of the IEEE PVG, 2003.

[7]1 A. Dietrich, I. Wald, C. Benthin, and P. Slusallek. The OpenRT Ap-
plication Programming Interface — Towards A Common API for Inter-
active Ray Tracing. Proceedings of the 2003 OpenSG Symposium.

[8] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo. Intel AVX: New
Frontiers in Performance Improvements and Energy Efficiency.

[9] J. Giinther, S. Popov, H.-P. Seidel, and P. Slusallek. Realtime Ray
Tracing on GPU with BVH-based Packet Traversal. In Proceedings of
the IEEE/Eurographics Symposium on Interactive Ray Tracing, 2007.

[10] W. Mark. Future Graphics Architectures. ACM Queue, 6(2), 2008.

[11] D. Musser and A. Stepanov. Generic Programming. In SSAC: Pro-
ceedings of the ACM SIGSAM International Symposium on Symbolic
and Algebraic Computation, 1989.

[12] M.J. Muuss. Towards Real-Time Ray-Tracing of Combinatorial Solid
Geometric Models. In Proceedings of BRL-CAD Symposium, 1995.

[13] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel
Programming with CUDA. ACM Queue, 6(2), 2008.

[14] S. Parker, S. Boulos, J. Bigler, and A. Robison. RTSL: A Ray Trac-
ing Shading Language. IEEE Symposium on Interactive Ray Tracing,
2007.

[15] S.Parker, W. Martin, P.-P. Sloan, P. Shirley, B. Smits, and C. Hansen.
Interactive Ray Tracing. In Proceedings of Interactive 3D Graphics,
1999.

[16] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley.
Interactive Ray Tracing for Volume Visualization. IEEE Transactions
on Computer Graphics and Visualization, 1999.

[17] M. Pharr and G. Humphreys. Physically Based Rendering: From The-
ory to Implementation. Elsevier Science & Technology Books, 2004.

[18] T. Purcell. Ray Tracing on a Stream Processor. PhD thesis, 2004.
Stanford University.

[19] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly Media, Inc., 2007.

[20] A. Reshetov, A. Soupikov, and J. Hurley. Multi-Level Ray Tracing
Algorithm. ACM Transaction on Graphics, 24(3), 2005.

[21] J.G. Siek and A. Lumsdaine. A Modern Framework for Portable High
Performance Numerical Linear Algebra. In Modern Software Tools for
Scientific Computing. Birkhauser Boston Inc., 1997.

[22] G. Stoll, W. R. Mark, P. Djeu, R. Wang, and I. Elhassan. Razor: An
Architecture for Dynamic Multiresolution Ray Tracing. Technical Re-
port TR-07-52, The University of Texas at Austin, 2006.

[23] 1. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM Transactions on
Graphics, 26(1), 2007.

[24] 1. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Render-
ing with Coherent Ray Tracing. Computer Graphics Forum, 2001.

