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Abstract
In this supplementary material we provide the details of the single scattering methods that use the medium manipulation scheme
proposed in the paper entitled “Unbiased Light Transport Estimators for Inhomogeneous Participating Media”.

1. Single scattering of point source lighting

In this supplementary document we consider a practically impor-
tant special case of participating media rendering, the computation
of single scattering of the light of a point source located at~l (Fig-
ure 1). As area lights can be approximated by many point sources,
and multiple scattering can be simulated by introducing Virtual
Point Lights [ENSD12], this basic operation can be extended to
a complete global illumination renderer. We take the adjoint ap-
proach and implement path tracing, thus traced particles are impor-
tons and their weight E will be the visual importance.
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Figure 1: Single scattering of point source lighting.

In this special case, the radiance gathered by ray ~p(s) =~e−~ωs
of start~e, direction ~ω, and length S is

L(~e,~ω) = T~e,~ω(S)L(~p(S),~ω)+

∫ S

0
T~e,~ω(s)σt(~p(s))a(~p(s))ρ(~ω ·~ω′(s))Lin(~p(s),~ω′(s))ds (1)

where σt(~p) is the extinction coefficient, a(~p) is the albedo,
ρ(~ω,~ω′) is the phase function, T~e,~ω(s) is the transmittance between
points~e and~e−~ωs, and~ω′(s) is the direction from light source~l to
point ~p(s). The incident radiance Lin due to a point source of power

Φ is

Lin(s) =
Φ

4π(D2 +(s− s~l)
2)

T~p(s),~ω′(s)(|~l−~p(s)|)

where D is the distance between the ray and the light source, and s~l
is the ray parameter where the ray is the closest to the point source.

To compute the Monte Carlo quadrature of the integral of Equa-
tion 1, we need to estimate transmittance T~e,~ω(S), findsample points
~p(s) at which the scattered radiance is evaluated and multiplied by
the estimate of transmittance T~e,~ω(s).

We estimate the transmittance as the product of the main part
transmittance and the weight, i.e. the importance of a particle trans-
mitted to the end of the considered interval, computed with the
difference extinction. The particle jumps to interaction points that
are generated with incrementally solving the sampling equation
for given σsamp(~p(s)) mimicking the absolute difference extinc-
tion. The following algorithm computes an unbiased estimate of
the transmittance in interval [0,S]:

Transmittance(~pstart,~ω,S)
E = exp(−

∫ S
0 σmain(~p(τ))dτ); // main part

s = 0;
while (|E| > 0)

// sampling equation for free flight
Solve {− log(1−rand()) =

∫
∆s
0 σsamp(~p(τ))dτ} for ∆s;

~p = ~pstart +~ω∆s; // point of interaction
s = s+∆s;
if (s≥ S) break ;
E = E(1−σdiff(~p)/σsamp(~p));
~pstart = ~p;

endwhile
return E;

end
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The key observation is that Algorithm Transmittance used to find
T~e,~ω(S) generates data at interaction points from which a low vari-
ance estimator of the transmittance can be computed at an arbitrary
point of the ray. This estimate is not constant between interaction
points, but thanks to the main part integral, it follows an exponen-
tial fall off [JNT∗11, NNDJ12]. This observation opens the possi-
bility of using arbitrary techniques for sampling scattering points
along the ray and employing the continuous transmittance function
to obtain unbiased low-variance estimates. We present several tech-
niques for finding these points, which can be used alone or even
combined with the application of Multiple Importance Sampling
(MIS).

1.1. Attenuation-driven sampling

Transmittance calculation produces samples, called interaction
points, along the ray with density σsamp(~p(s)). To prove that the
sampling extinction is the density of the interaction points, let us
determine the density of samples at point ~p(s) taking arbitrary num-
ber of jumps of length governed by the free flight sampling with
sampling extinction σsamp(~p(s)). We use the shorthand notation of
σ(s) = σsamp(~p(s)). The point at distance s will be reached in a
single jump, i.e. with zero number of intermediate points, with pdf

pdf0(s) = σ(s)exp
(
−

∫ s

0
σ(τ)dτ

)
.

The same point can be reached in two steps jumping first to an
intermediate point at distance t where 0 ≤ t ≤ s and then jumping
from there to the point at distance s with probability density

pdf1(t,s) = σ(t)exp
(
−

∫ t

0
σ(τ)dτ

)
σ(s)exp

(
−

∫ s

t
σ(τ)dτ

)
=

σ(t)pdf0(s).

The unconditional pdf of the two step journey taking all possible
intermediate t distances into account is

pdf1(s) =
∫ s

0
σ(t)dt ·pdf0(s).

Now, let us examine the pdf of arriving at point of distance s via two
intermediate points of distances t1 and t2 where 0≤ t1 ≤ t2 ≤ s:

pdf2(t1, t2,s) = σ(t1)σ(t2)pdf0(s).

The unconditional pdf of the three step journey taking all t1, t2 in-
termediate points into account is

pdf2(s) =
∫ s

0

∫ s

t1
σ(t1)σ(t2)dt2dt1 ·pdf0(s).

The domain of the integral of the first factor is 0≤ t1 ≤ t2 ≤ s, and
its integrand σ(t1)σ(t2) is symmetric for swapping t1 and t2. Thus,
the integral for domain 0 ≤ t1 ≤ t2 ≤ s is half of the same integral
for domain t1, t2 ∈ [0,s]:∫ s

0

∫ s

t1
σ(~p(t1))σ(~p(t2))dt2dt1 =

1
2

∫ s

0

∫ s

0
σ(~p(t1))σ(~p(t2))dt2dt1 =

1
2

(∫ s

0
σ(~p(t))dt

)2

Thus, we obtain:

pdf2(s) =
1
2

(∫ s

0
σ(~p(t))dt

)2

·pdf0(s).

Let us now consider the general case of allowing n intermediate
points between 0 and s. The integral of pdfn(t1, t2, . . . , tn,s) is a
product of an integral σ(t1)σ(t2) . . .σ(tn) for domain 0≤ t1 ≤ t2 ≤
. . .≤ tn ≤ s and pdf0(s). As the integrand in the first factor is sym-
metric for any permutation of t1, t2, etc. values, its integral can be
obtained as the ratio of the same integral for domain [0,s]n and n!:

pdfn(s) =
1
n!

(∫ s

0
σ(t)dt

)n

·pdf0(s).

The density of samples generated with arbitrary steps is

datt(s) =
∞
∑
n=0

pdfn(s) =

(
∞
∑
n=0

1
n!

(∫ s

0
σ(t)dt

)n
)
·pdf0(s) =

exp
(∫ s

0
σ(τ)dτ

)
σ(s)exp

(
−

∫ s

0
σ(τ)dτ

)
= σ(s).

Note that the density of this sampling is not normalized since a
ray may have 0, 1, 2, etc. number of interaction points. This means
that the sample should be weighted by d(s) instead of the product
of the pdf and the number of samples.

One option is to use the sample points that are generated for the
transmittance function also for the locations where scattering of
the light from the point source is evaluated. The sampling density
mimics the difference extinction if main part separation is turned
on, which means that it does not mimic any of the factors in the
integral of equation 1, thus it provides poor importance sampling
and its only advantage is that sample points generated for the trans-
mittance are reused for scattering as well.

1.2. Attenuation-driven sampling with importance
re-sampling

The importance sampling aspect can be improved by the concept of
Sampling Importance Re-sampling (SIR), which randomly reuses
sample ~p(si) generated during the attenuation calculation, with
probability

λ
T~e,~ω(si)ρ(~ω,~ω

′(si))σt(~p(si))a(~p(si))

σsamp(~p(si))

where λ is an appropriate factor that guarantees that these ratios are
indeed probabilities, i.e. they are not greater than 1:

λ = min
i

σsamp(~p(si))

T~e,~ω(si))ρ(~ω,~ω′(si))σt(~p(si))a(~p(si))
.

This rejection sampling scheme increases the variance but saves
the expensive shadow ray computation of those interaction points
that would have negligible scattered radiance. The density of this
scheme is a composition of free flight sampling with σsamp and
importance re-sampling:

dSIR(s) = λT~e,~ω(s)P(~ω,~ω
′(s))σt(~p(s))a(~p(s)).
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1.3. Source-driven sampling

As it has been pointed out in [KF12], factor Lin(s) of the integral
in Equation 1 can cause significant variance since 1/(D2 + (s−
s~l)

2) can be unbounded and may have a singularity if the ray goes
close to the source making D small. Thus, it is worth sampling
proportionally to this factor, which is possible with the application
of the Cauchy distribution [KF12]. This option is called source-
driven sampling. The pdf of Cauchy distribution is

pdfsource(s) =
D

(θ(smax)−θ(s0))(D2 +(s− s~l)
2

where θ(s) = tan−1((s− s~l)/D) is the angle corresponding to ray
parameter s.

1.4. Scattering-driven sampling

The sampling process can also mimic T~e,~ω(s)σt(~p(s)) by using a
piece-wise linear approximation of the extinction coefficient to al-
low the analytic solution of the sampling equation. This option is
called scattering-driven sampling. The pdf of this sampling is

pdfscatter(s) = σ̃t(~p(s))exp

− s∫
0

σ̃t(~p(τ))dτ


where σ̃t(~p(s)) is the piece-wise linear approximation of the ex-
tinction coefficient.
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