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Dwivedi sampling

» regular path tracing random walk
» tendsto get lostinside a volume bounded by a shape




Dwivedi sampling

» random walk biased to exit bounded volume as quickly as possible
» assumes constantillumination from the outside [Kd14]
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» assume homogeneous slab with isotropic phase function

» approximate closed-form solution of transport using this simplified setting
» known as zero-variance theory (term may be a bit bold)




Dwivedi sampling

» random walk biased towards light source
» aims to exit towards light [MHD16]




Dwivedi sampling

» random walk biased towards light source
» aims to exit towards light [MHD16]
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» achieved by biasing the PDF to sample direction and distance
» estimator remains unbiased!



spectral tracking

» another problem with skin: chromatic media
» collision coefficients i depend on wavelength A

» forinstance free flight distance much longer for long wavelengths:
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» makes path invalid for different wavelength?
» can we still exploit coherence?




spectral tracking via MIS

hero wavelength sampling [WND % 14]
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sample perfectly for one single wavelength A

evaluate path for a stratified set of wavelengths A; at the same time

optimally weighted combination via MIS (balance heuristic)
» limited to regular tracking because it requires explicit evaluation of PDF
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spectral tracking via MIS

image comparison 64spp

skin material with 1 wavelength




spectral tracking via MIS

image comparison 64spp

~ skin material with 4 wavelengths (SSE)




spectral tracking via MIS

image comparison 64spp

~ skin material with 8 wavelengths (AVX)




spectral tracking without PDF [KHLN17]

sample by common majorant i

how do decide for null collision, scattering, or absorption?
probability according to i, (A), ts (), e (A)

= pick by maximum over A;

» pick by average weighted by spectral path throughput history
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spectral tracking without PDF [KHLN17]

» sample by common majorant i
» how do decide for null collision, scattering, or absorption?
» probability according to u,, (A), s (), ta(A)

» pick by maximum over \;

» pick by average weighted by spectral path throughput history
» resultsin different noise patterns:




speed!

low variance estimators are important

but also, in volumes most of the run time is memory fetching




acceleration data structures

grid, super voxels [SKTM11], kd-tree [YIC*11], adaptive blocks

adaptivity driven by
» pixel footprint / camera tessellation
» heterogeneity / variation

two-level modelling (super voxel, kd nodes) store majorants & in coarse blocks



acceleration data structures
grid, super voxels [SKTM11], kd-tree [YIC>* 11], adaptive blocks
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adaptivity driven by
» pixel footprint / camera tessellation
» heterogeneity / variation

two-level modelling (super voxel, kd nodes) store majorants & in coarse blocks
» perform regular tracking on coarse blocks [SKTM11]



acceleration data structures
grid, super voxels [SKTM11], kd-tree [YIC>* 11], adaptive blocks
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adaptivity driven by
» pixel footprint / camera tessellation
» heterogeneity / variation

two-level modelling (super voxel, kd nodes) store majorants & in coarse blocks
» perform regular tracking on coarse blocks [SKTM11]

> access Ws(A), e (A) on fine levels to sample collision type



acceleration data structures

regular tracking

» heeds to step through every voxel, bad for fine tessellations
. well chosen tessellation is a big advantage!
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acceleration data structures

null collision-based tracking

is independent of tessellation and is efficient in thin media (few events)
high number of events in dense media, regardless of tessellation!
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accessing the memory within the same voxel is still expensive

alleviated by decomposition tracking [KHLN17]
» separate u into sum of coarse and fine, to sample distance pick shortest (and early out!)

» also profits full regular tracking




emissive media

thin/dense media make a difference

no event inside the medium means we cannot pick up emission:
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emissive media

thin/dense media make a difference

» following the idea of beams, collect emission along a ray
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» particularly well suited for regular tracking, touching all voxels anyways




emissive media

thin/dense media make a difference

direct application of MIS with NEE [VH13] introduces noise:
Point + NEE Line + NEE

reason: NEE cannot create paths with end point outside the medium
» forward scattering PDF is poor, however, and now it picks up line emision!



emissive media

thin/dense media make a difference

need to teach next event estimation about line emission [SHZD17]:
Point + NEE Line + NEE Line + FNEE

¥




up next:

.

summary and open research problems




summary

free flight distance sampling

woodcock/delta tracking
transmittance estimation

track-length
residual ratio
free flight versions

path sampling
path space formulation
summary of advanced methods
acceleration structures

for regular tracking
for null collisions (bottom-level)



open research problems

null collision algorithms and MIS

missing link to integrate into powerful framework
» forinstance combine with equi-angular sampling

can we estimate the PDF?

» expectation and division do not commute!
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open research problems

leverage recent advances in machine learning

special purpose denoising

» including a volume prior?

path guiding for volumes?

» importance sampling for multiple vertices?



open research problems

joint handling of surfaces and geometry

still often surface transport is handled separately
» makes inclusion of all interreflections hard

» custom-cut algorithms increase maintenance cost



open research problems

generalisation to correlated scatterers

» core assumption of exponential path length: uncorrelated particles!
» particle repulsion such as in cell growth is very correlated

» really, no collision can be found inside the current particle (min distance)
» Some existing work

Delta Sum

[d'Eon 2018, Bitterli et al. 2018]




thank you!

any questions?
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