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Dwivedi sampling / zero variance random walks
spectral tracking

acceleration data structures
for regular tracking
inside these: null collision based

emissive media
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Dwivedi samplingDwivedi sampling
regular path tracing random walk

tends to get lost inside a volume bounded by a shape 
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Dwivedi samplingDwivedi sampling
random walk biased to exit bounded volume as quickly as possible

assumes constant illumination from the outside [Kd14] 

assume homogeneous slab with isotropic phase function
approximate closed-form solution of transport using this simplified setting

known as zero-variance theory (term may be a bit bold)
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Dwivedi samplingDwivedi sampling
random walk biased towards light source

aims to exit towards light [MHD16] 
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Dwivedi samplingDwivedi sampling
random walk biased towards light source

aims to exit towards light [MHD16] 

 
achieved by biasing the PDF to sample direction and distance
estimator remains unbiased!
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spectral trackingspectral tracking
another problem with skin: chromatic media

collision coefficients  depend on wavelength 
for instance free flight distance much longer for long wavelengths: 

makes path invalid for different wavelength?
can we still exploit coherence?

μ λ
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spectral tracking via MISspectral tracking via MIS
hero wavelength sampling [WND∗14] 
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450 500 550 600 650 700

sample perfectly for one single wavelength 
evaluate path for a stratified set of wavelengths  at the same time
optimally weighted combination via MIS (balance heuristic)

limited to regular tracking because it requires explicit evaluation of PDF
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spectral tracking via MISspectral tracking via MIS
image comparison 64sppimage comparison 64spp

skin material with 1 wavelength 
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spectral tracking via MISspectral tracking via MIS
image comparison 64sppimage comparison 64spp

skin material with 4 wavelengths (SSE) 
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spectral tracking via MISspectral tracking via MIS
image comparison 64sppimage comparison 64spp

skin material with 8 wavelengths (AVX) 
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spectral tracking without PDF [KHLN17]spectral tracking without PDF [KHLN17]
sample by common majorant 
how do decide for null collision, scattering, or absorption?
probability according to , , 

pick by maximum over 
pick by average weighted by spectral path throughput history 
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spectral tracking without PDF [KHLN17]spectral tracking without PDF [KHLN17]
sample by common majorant 
how do decide for null collision, scattering, or absorption?
probability according to , , 

pick by maximum over 
pick by average weighted by spectral path throughput history
results in different noise patterns: 

 

μ̄

(λ)μn (λ)μs (λ)μa

λi

13



speed!speed!
low variance estimators are importantlow variance estimators are important

but also, in volumes most of the run time is memory fetching 
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acceleration data structuresacceleration data structures
grid, super voxels [SKTM11], kd-tree [YIC∗11], adaptive blocks

   

adaptivity driven by
pixel footprint / camera tessellation
heterogeneity / variation

two-level modelling (super voxel, kd nodes) store majorants  in coarse blocksμ̄
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acceleration data structuresacceleration data structures
grid, super voxels [SKTM11], kd-tree [YIC∗11], adaptive blocks

   

adaptivity driven by
pixel footprint / camera tessellation
heterogeneity / variation

two-level modelling (super voxel, kd nodes) store majorants  in coarse blocks
perform regular tracking on coarse blocks [SKTM11]

μ̄
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acceleration data structuresacceleration data structures
grid, super voxels [SKTM11], kd-tree [YIC∗11], adaptive blocks

   

adaptivity driven by
pixel footprint / camera tessellation
heterogeneity / variation

two-level modelling (super voxel, kd nodes) store majorants  in coarse blocks
perform regular tracking on coarse blocks [SKTM11]
access  on fine levels to sample collision type

μ̄

(λ), (λ)μs μa
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acceleration data structuresacceleration data structures
regular trackingregular tracking

needs to step through every voxel, bad for fine tessellations
well chosen tessellation is a big advantage! 
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acceleration data structuresacceleration data structures
null collision-based trackingnull collision-based tracking

is independent of tessellation and is efficient in thin media (few events)
high number of events in dense media, regardless of tessellation! 
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accessing the memory within the same voxel is still expensive
alleviated by decomposition tracking [KHLN17]

separate  into sum of coarse and fine, to sample distance pick shortest (and early out!)
also profits full regular tracking

μ
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emissive mediaemissive media
thin/dense media make a differencethin/dense media make a difference

no event inside the medium means we cannot pick up emission: 

density
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emissive mediaemissive media
thin/dense media make a differencethin/dense media make a difference

following the idea of beams, collect emission along a ray 

particularly well suited for regular tracking, touching all voxels anyways
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emissive mediaemissive media
thin/dense media make a differencethin/dense media make a difference

direct application of MIS with NEE [VH13] introduces noise: 
Point + NEE Line + NEE

reason: NEE cannot create paths with end point outside the medium
forward scattering PDF is poor, however, and now it picks up line emision!
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emissive mediaemissive media
thin/dense media make a differencethin/dense media make a difference

need to teach next event estimation about line emission [SHZD17]: 
Point + NEE Line + NEE Line + FNEE
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end of contentend of content
up next:up next:
summary and open research problems
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summarysummary
free flight distance samplingfree flight distance sampling

woodcock/delta tracking
transmittance estimationtransmittance estimation

track-length
residual ratio
free flight versions

path samplingpath sampling
path space formulation
summary of advanced methods

acceleration structuresacceleration structures
for regular tracking
for null collisions (bottom-level)
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open research problemsopen research problems
null collision algorithms and MISnull collision algorithms and MIS

missing link to integrate into powerful framework
for instance combine with equi-angular sampling

can we estimate the PDF?

expectation and division do not commute!

X =
f( )x̄

p( )x̄
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open research problemsopen research problems
leverage recent advances in machine learningleverage recent advances in machine learning

special purpose denoising
including a volume prior?

path guiding for volumes?
importance sampling for multiple vertices?
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open research problemsopen research problems
joint handling of surfaces and geometryjoint handling of surfaces and geometry

still o�en surface transport is handled separately
makes inclusion of all interreflections hard
custom-cut algorithms increase maintenance cost
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open research problemsopen research problems
generalisation to correlated scatterersgeneralisation to correlated scatterers

core assumption of exponential path length: uncorrelated particles!
particle repulsion such as in cell growth is very correlated
really, no collision can be found inside the current particle (min distance)
some existing work 

  
[d'Eon 2018, Bitterli et al. 2018]
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thank you!thank you!
any questions?any questions?
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