Technical report, November 2012 (Revision 2, July 2013)

Implementing Vertex Connection and Merging

Iliyan Georgiev*
Saarland University
Intel VCI, Saarbriicken

v 9

Stage 1: a) Trace light sub-paths

b) Connect light vertices to eye

_‘

¢) Build range search structrure

V ~\1\~~\~~\~u-f‘

I > > .

¥

VM

Stage 2:

a) Connect to a light source and to
corresponding light vertices

b) Merge with nearby light vertices

c¢) Continue eye sub-path

Figure 1: An overview of our combined vertex connection and merging (VCM) algorithm. Rendering an image is performed in two stages. In
the first stage, we trace sub-paths from the light sources, store their vertices, connect them to the eye, and additionally build a range search
acceleration structure over them. In the second stage, we trace an eye sub-path for each pixel, and with each eye vertex we construct full paths
via vertex connection (VC) and vertex merging (VM), evaluate their associated multiple importance sampling (MIS) weights, and accumulate
the weighted contributions. The path weight evaluation is an important implementation aspect and is the main focus of this report. We present
a way to efficiently evaluate the weight for a path using only data that is available at the two vertices being connected or merged, avoiding
access to any other path vertices in memory. This also allows us to avoid storing the eye sub-path vertices, effectively making the second stage
of the algorithm an extension of traditional path tracing with next event estimation, adding light vertex connection and merging techniques.

Abstract

Bidirectional path tracing (BPT) and photon mapping (PM) are
probably the two most versatile physically based rendering algo-
rithms available today. It has been acknowledged that BPT and PM
are complementary in terms of the types of light transport effects
they can efficiently capture. Our recently proposed vertex connec-
tion and merging (VCM) algorithm aims to leverage the advantages
of both methods by combining vertex connection techniques from
BPT and vertex merging techniques from PM via multiple impor-
tance sampling [Georgiev et al. 2012]. We showed that this com-
bined algorithm can efficiently capture a wide range of effects, and
can be substantially more robust than either BPT or PM alone,
while preserving the higher asymptotic performance of BPT.

The focus of our original paper is on the formal derivation, asymp-
totic analysis, and evaluation of the VCM algorithm. In this tech-
nical report, we address the most technically challenging part of its

*e-mail: georgiev@cs.uni-saarland.de

practical implementation — the multiple importance sampling (MIS)
weighting. Indeed, correctly implementing MIS is already taxing in
BPT, and VCM increases the complexity by adding even more path
sampling techniques. More importantly, the efficient light sub-path
reuse with vertex merging allows for cheaply constructing large
amounts of full paths for each pixel, which in turn significantly
increases the impact of path weight evaluation on the overall per-
formance. The traditional BPT-style MIS weight computation that
iterates over all path vertices can therefore become inefficient. We
derive a new scheme to accumulate and store partial weight sums in
the vertices of light and eye sub-paths. This allows us to efficiently
compute the weight for a full path only using data cached at the two
vertices that are connected or merged. The scheme is similar to the
one independently developed by van Antwerpen [2011a; 2011b] for
BPT, but in addition accounts for vertex merging techniques.

We also discuss how to handle infinite and singular light sources,
cameras and materials with MIS, how to use per-pixel merging
radii, and how to implement VCM in a memory efficient way.

Symbol Description Appears in
X =X0...Xk Full length-k path: vertex xg is on a light source, X, is on the eye lens
Y =Yo...Ys—1 Light sub-path, with first vertex yo = xo on a light
Z=7Z0...%¢_1 Eye sub-path, with first vertex zo = xx, on the eye lens
?i, E Forward (i.e. actual) and reverse area pdfs for sub-path vertex ¢ (?z = 7(”71 and E = ?az(@) 2), (6)
o,is Doy Forward and reverse solid angle pdfs for sub-path vertex ¢ 3), ()
i i Forward and reverse pdf conversion factors from solid angle measure to area measure @), (8)
Dve,s,ts PVC,s Vertex connection (VC) pdf for a length-k path with s light vertices and t = k41— s eye vertices (10), (13)
DM, s,t5 DVM, s Vertex merging (VM) pdf for a length-£ path with s light vertices and ¢ = k42— s eye vertices (10), (13)
Nves Nvm Number of samples (i.e. paths) used for vertex connection and vertex merging, respectively 11
Nvem = %mﬁ Shorthand for all constants that appear in the multiple importance sampling path weight (12) (20)

Table 1: A list of some commonly used symbols in this document. Figure 2 illustrates the redundant (sub-)path notation and the pdf notation.

1 Notation

The technical nature of this document requires the extensive use of
mathematical notation. In this section, we introduce the notation
for paths and their sampling probability densities. Table 1 summa-
rizes some commonly used symbols in the document. For more
definitions we refer to our original paper [Georgiev et al. 2012].

Paths. Veach’s [1997] path integral formulation of light transport
defines the value of a pixel as an integral over the space of all paths:

=) du(% f(i)}
I = X)du(x) =E |—=| =E[(])]. 1

[i@am =5 |18 —en. o
A path of length k (edges) X = x¢...Xy is a tuple of k£ + 1 ver-
tices, where the vertex xg is on a light source, and x, is on the eye.
A Monte Carlo estimator (/) for this integral can be constructed
by sampling a random path X and dividing its measurement con-
tribution f(X) by its probability density p(X). Path tracing based
methods do not sample the individual vertices on a path indepen-
dently, but sequentially by performing random walks in scene.

Sub-paths. Bidirectional algorithms construct a full path X by
joining the endpoints of one sub-path traced from a light source
and another one traced from the eye. We will denote a light sub-
path with s vertices by y = yo...ys—1 and an eye sub-path with
t vertices by Z = zo ...2z:—1. Here, the vertex yo is a point on a
light source, and zg is on the eye lens. These notations, illustrated in
Figure 2, are redundant with the x-notation, but conveniently index
the vertices in the order of their generation. This symmetry will al-
low us to perform the same derivations for light and eye sub-paths.
In particular, the forward and reverse probability density notation
defined for y below also applies to z.

Forward vertex pdfs. The probability density function (pdf) of a
(sub-)path describes the joint distribution of its vertices via a chain
of conditional vertex pdfs. We denote these vertex pdfs by:

o) ifi =0,
Ti(y) = {?U,i(y)7i (¥) otherwise, @
with
oy JPe(yo—y) ifi =1,
Toily) = {pg(yiﬁyiﬁyi) ifi>1 3)
Gi(7) = S8 fimiz1)

|y —yieal?

Above, p(.) denotes an unconditional pdf expressed w.r.t. the area
measure, e.g. p(yo) for sampling yo on a light source. The sub-
script o denotes a solid angle pdf. The factor ?1 converts the pdf

@ light sub-path vertex <,
@ cye sub-path vertex X~

X1 X2
7s(2) Po(2)
verle)EScin(r)lection z5 P2 (2) 71 (2) Zo
Z2 Z;
To(¥) To(2)
verle?scin;;,ction yg\?)iy_) __________ ?1 (Z) Zo
y z
Po(¥) ' tl To(2)
verle(:;(Egr)ging y.o\ () P2(¥) ??2;%3
Y1 y2 Z1

Figure 2: An illustration of vertex connection and merging path
sampling techniques, along with their associated vertex pdfs. The
different VC and VM techniques for sampling length-k paths are
identified by the number of light sub-path vertices s.

measure from solid angle to area, with 0;_,;,_1 being the angle be-
tween the surface normal at y; and the unit vector m . We call
?i forward vertex probabilities (w.r.t. the random walk direction).
With this notation, the pdf of a sub-path y with s vertices is:

m®:ﬁﬁ@v)

Reverse vertex pdfs. Analogously to the forward vertex pdf nota-
tion, we define a reverse notation:

o p(yr) ifi =k,
%(Y) = {Km(y)@(y) otherwise, ©
with
. pa(}’chu—yk) lf’L:k’_lv

o, = if 2 7
%,) {pa(yiPyHl(_yi_,_Q) ifi<k—1 @)

- cosbiit1

)= g v

The arrow notation makes it easy to distinguish between the actual
sampling pdf of a vertex, 7;(¥), and its “reverse” pdf, ‘p; (¥). That
is, the latter denotes the probability density for sampling y; in a
direction opposite to that of the random walk. For example, in (6)
Yy is a light sub-path vertex that has landed on the eye lens, and
p(yx) denotes the probability for sampling that point directly on
the lens surface, i.e. as a part of an eye sub-path. These reverse
pdfs are needed for the multiple importance sampling path weights.
Recall that all notation above applies to eye sub-paths z as well.

2 Vertex Connection and Merging

As we mentioned earlier, bidirectional path tracing and photon
mapping complement each other in terms of the light transport ef-
fects they can efficiently capture. Aiming to combine their advan-
tages, vertex connection and merging (VCM) [Georgiev et al. 2012]
utilizes path sampling techniques from both algorithms:

o Vertex connection (VC) creates an edge between the endpoints
of alight and an eye sub-paths. This is the sampling technique
used in bidirectional path tracing.

o Vertex merging (VM) can intuitively be thought to concate-
nate the two sub-paths by virtually welding their endpoints, if
they lie within a given distance r to each other. VM is our re-
formulation of photon mapping as a path sampling technique.

Figure 2 graphically illustrates the VC and VM techniques. In the
rest of this section, we summarize the mathematical formulation of
VCM and outline its algorithmic implementation.

2.1 Primary Estimators and Path Densities

Having a path X sampled via vertex connection or merging, we can
obtain a primary estimate for the pixel value (1) by dividing the
measurement contribution of the path by its probability density:

— f v,s t(i)
1)y (X) = —/—=, (&)
(I)o(x) Posr(®)
where v is either VC or VM, and s and t denote the number of
vertices on the light and eye sub-paths, respectively. Taking into
account that the sub-paths y and z are sampled independently, the
full path pdfs for vertex connection and merging are, respectively:

Pve,s,t(X) = ps(¥)pt(2)

10
Dvm,s,t(X) = ps(y)pt(i)wr2, (10)

where r is the vertex merging radius. The measurement contribu-
tion function f, s+ has slightly different shapes for VC and VM.
For its definition, as well as for the derivation of the VM path pdf,
we refer to our paper [Georgiev et al. 2012]. It is important to note
at this point that, unlike the paper, in this report we adhere to the in-
tuitive definition of “vertex merging”. That is, we consider the two
merged vertices to be the endpoints of the eye and light sub-paths,
as this view conveniently aligns with the implementation. With this
interpretation, a full VM path (called extended path in the paper)
constructed by a (VM, s, t) technique is one segment (edge) shorter
than a VC path constructed by a (VC, s, t) technique (Figure 2).

2.2 Combined Estimator

The heart of our VCM algorithm is the secondary multiple impor-
tance sampling (MIS) pixel estimator that combines vertex connec-
tion estimators (I)vc and vertex merging estimators (I)vu:

1 nyc
(Iyemn = — Z Z wve,s,t(X1) (Dve(Xi) +
e 15 5500
(11)
TRRALY
Z Z wVM,S,t(il) <I>VM(XZ)'
WM T o

It considers one eye sub-path through the corresponding pixel,
whose vertices are connected to the vertices of nyc light sub-paths
and potentially merged with the vertices of nyy light sub-paths. Our
implementation uses nyc = 1, and we set nyy to the total number of
light sub-paths, which for symmetry reasons we choose to be equal
to the total number of eye sub-paths, i.e. the image resolution.

The power heuristic [Veach 1997] weight for technique (v, s, t) is

ng pf,s,t(i)

Wy, s,(X) =
n\B’C Z pe(‘,,s’,t’ (i) + n\LjM Z p\le,s’,t’ (i)
s'>0,t/ >0 s/ >2,t'>2
| (12)
= ’
nec péC,s’,i’(i) neM p€M7S',t’ (%)
B Z B = "B Z B (%
Ny s/>0,t'>0 pv,s,t(x) Ny §/>2,t/>2 pv,s,t(x)

which takes into account all possible ways of sampling X with ver-
tex connection and merging. Note that the weight for a technique is
amplified by the number of samples n., i.e. light paths, it uses.

2.3 Algorithm

Since equation (11) is a straightforward extension of Veach’s [1997,
p-300] bidirectional path tracing (BPT) estimator, we could fol-
low the classical BPT implementation for VCM as well. That is,
for each pixel we would first trace one light and one eye sub-path,
and then connect and merge each pair of opposing vertices, thereby
reusing the sub-paths to compute multiple VC and VM estimates.
However, the VM sub-path concatenation lends itself to a signifi-
cantly more efficient reuse scheme: we can potentially merge each
eye sub-path vertex with the vertices of all light sub-paths with a
single range search, without tracing any rays. To be able to do this,
we split rendering into two stages, as illustrated in Figure 1:

1. We first trace all light sub-paths and connect their vertices to
the eye. Just like in photon mapping, we then build a range
search structure over the vertices, e.g. a kd-tree or a hashed
regular grid. Our implementation uses a hashed grid.

2. In the second stage, we trace an eye sub-path for every pixel.
Each sampled eye vertex is first connected to a light source.
We then connect it to the vertices of the light sub-path associ-
ated with the corresponding pixel. Finally, we merge the eye
vertex with the vertices of all light sub-paths that fall within a
user-specified search radius . The primary estimate of each
constructed full path is multiplied by a MIS weight before it is
ultimately accumulated to the combined pixel estimate (11).

In the paper we provide pseudocode for the above algorithm. Note
that we do not store the first vertex of any sub-path (i.e. yo and zo),
as we usually can efficiently reduce correlation by sampling a new
vertex on a light source or on the camera lens for each connection.

The last step in the second stage — the path weight evaluation — is
an important implementation aspect of the algorithm. Every path
requires a MIS weight, and Veach’s [1997] evaluation scheme can
be inefficient for vertex merging which constructs a significantly
larger number of paths than BPT. In the following section we will
derive a new weight evaluation scheme that is more efficient than
Veach’s scheme for both vertex connection and vertex merging.

3 Efficient Path Weight Evaluation

The naive way to evaluate the weight (12) is to compute all path
pdfs in the denominator independently. For bidirectional path trac-
ing, which uses the same formula, minus the VM sum, Veach [1997,
p. 306] developed a more efficient scheme by exploiting the fact that
many of the terms in the fractions cancel out when the path pdfs are
expanded. He computes the VC sum by looping once over the light
and eye sub-path vertices, accumulating the pdf fractions.

While Veach’s scheme can be easily extended to vertex merging, it
has sub-optimal efficiency. First, it makes many redundant com-
putations, as every time a sub-path is reused (for connecting or

merging) the same terms associated with its vertices are recom-
puted. Moreover, it requires accessing every path vertex in memory.
Weight computation can therefore become a significant overhead
for vertex merging, which relies heavily on sub-path reuse and of-
ten constructs a large number of full paths with a single range query.

To see how to solve these problems, notice that the unweighted
contribution of a path is actually computed efficiently in BPT, and
also in VCM. Each sub-path vertex stores its throughput, i.e. the
accumulated contribution terms from all preceding sub-path ver-
tices [Veach 1997, p.304]. Upon connecting or merging two ver-
tices, the unweighted contribution, i.e. the primary estimate (9), is
quickly evaluated using only the data stored at those two vertices.
We set out to apply the same efficient scheme to path weight eval-
uation as well. To this end, we reformulate the two sums in (12) as
recursive quantities that can be incrementally computed and cached
at the sub-path vertices as we perform the random walks.

At this point, readers not interested in the formal derivation of our
new scheme can skip to Section 4. There we discuss its practical
implementation, describing the quantities stored at each sub-path
vertex and how to compute the full path weight from this data.

3.1 Partial Sub-Path Weights

In order to keep the notation simple, in this section we will consider
paths X of length k& with s light sub-path vertices, often omitting
the redundant subscript t. Also, without loss of generality, we will

assume 3 = 1, i.e. that the balance heuristic is used. We now
rewrite the path weight (12) more compactly:
1
B BRNGEY
Tve Pvc,j nvm Pvm,j
T 2 pus Z -

where p,,_; is the pdf for sampling a length-k full path using a light
sub-path with j vertices, and v € {VC, VM}.

We now write the path weight in the form

1
RS 4
where we have rearranged the sums in (13) to iterate over the light
and eye sub-path vertices, respectively, and have extracted the term
Dv,s/Pv,s = 1 from the appropriate sum. The partial light and
eye sub-path weights w, 2" and w,*¢ have slightly different shapes
depending on the value of v.

Wo,s,t

Vertex connection. For paths sampled with v = VC we have:

s—1 s
light Pvc,j Nvm Pvm,j
wdly = Y g R e (15)
s Dvc,s ve o DPve,s
k+1 k
eye Dvce,j Nym DPvm,j
Wye, s = E —= 4 P —=. (16)
j:S_Hpvc,s Ve j:S+1pvc7s

Vertex merging. For paths sampled with v = VM we have:

s—1

wvnh%h; _ e Z PVC,J Z Pvm,j (17)

Pvm,s =2 Pvm,s
n k+1 p k »
eye vC VC,] VM, j
Wy s = E —, (18)
pvm s j=st1 Pvm,s

To summarize, the welght for a full path in VCM is given by equa-
tion (14). Its terms are given by equations (15)-(16) or (17)-(18),
depending on the technique used to construct the path.

3.2 Recursive Formulation

We now reformulate the path weight (14) in a form that is suitable
for evaluation in a forward manner, i.e. in the order of the gen-
eration of the sub-paths, instead of iterating backwards from their
endpoints as Veach [1997, p. 306] suggests. We write the weight as

1
Ev,s—l(y) + 1 + Em_l(i)

where Wy, s—1(y) and W, +—1(Z) are recursive formulations of the
partial light and eye sub-path weights w,, I'Eh‘ and w,s. These two
quantities can be tracked and updated as we trace the sub-paths y
and z, and be readily available for summing up when we connect
or merge the sub-path endpoints. We now derive these recursive
quantities separately for VC and VM.

Wy, s,t =

. 19)

In the following, we will use a shorthand notation to group all con-
stants that appear in the path weight into a single term:

T . (20)

vC

Nvem =

Vertex connection. Using the path pdf definitions (10), we follow
Veach [1997, p. 306] to expand the pdf fractions in (15):

s—1 s—1 ¢
+77VCMZ Di— 1 HT (21)

w.light
=3 1155
j=0 i=j
where we use the forward and reverse vertex pdf notations from
(2) and (6). Next, we reformulate the VC and VM sums as two
recursive quantities (omitting the y arguments for readability):

—
—vc¢ _ Po —_VM
Wyc,0 = Wyc,0 = =0

o 2
_ s _ 1 _
wEo= B (1w wo= (i 4),

and write the partial light sub-path weight (15) as
wydls = We,s—1(F) + Mvew e, s—1(F)- (23)

We can further combine Evc,i and EX? ; to formulate (23) as a sin-

gle recursive quantity (again omitting the y Yy arguments):

Po

Evc, 0= ﬁ (24)

1 1
Wyc,; = E <7IVCM + ? + ?w\/c,i—1> (25)

Finally, with the eye sub-path notation z (Figure 2) the above re-
cursive formula applies without any modification to (16) as well,
allowing us to plug Wyc,s—1(¥) and Wyc,¢—1(2Z) into (19).

Vertex merging. We now expand equation (17) as above:

light 1 g1g2 g1_;1%1
wVM,rWM%ﬁJZOET ;E?%

Using the same methodology as for vertex connection, we obtain:

1 1 1
= _ + 27
v, 1 ﬁ (nVCM $0 Nvem ;0) ()
1 1
EVM,i = ? (+ ?i—l + <Ez'flw\/M,z‘fl) (28)

Tivem

Again, using the z notation for eye sub-paths, we can apply the
above formula to (18) as well, which allows us to plug Wywm,s—1(¥)
and Wywm,t—1(Z) into (19) for the weight for a vertex-merged path.

4 Practical Implementation

Equations (24)-(25) and (27)-(28) define the partial weight quanti-
ties Wvce,; and wWyw,; associated with the sub-path vertices. Ideally,
we want to cache these at every light and eye vertex as we trace the
sub-paths. Then, upon connecting or merging any two vertices, the
full weight would be obtained by simply summing up their respec-
tive Wyc,; O Wywm,; quantities, as postulated by equation (19).

Unfortunately, the above scheme cannot be directly implemented,
since Wyc,; and Wyw,; require reverse probabilities that are not yet
known at the point of sampling sub-path vertex ¢. More specifically,
2:(¥) depends on the next two vertices via po (Yi«Yit1<yir2)-
Slmllarly, pi—1(¥) depends on the next sub-path vertex, y;i.

Luckily, an efficient implementation of the scheme is made possible
by splitting up its computations. To this end, at y; we cache only
(and all) the terms that depend on the sub-path vertices sampled
up to and including y;. We extract three vertex quantities from
Wyc,; and Wy, ;, postponing the evaluation of the remaining terms
until we have information about the required vertices, e.g. when we
sample the next sub-path vertex or couple y; with another vertex:

1 1
Wyc,; = % (nVCM + i + ﬁ EVC,i—l) (29)
-]

1
Wym,i = ? e + paz 1 ?(1 + Wywm,i— 1) (30)
=~

qve VM

where we have used the expansion pl 1 = ?g i1 g, 1, with
pg i—1 being the solid angle reverse pdf for sub-path vertex ¢ — 1.
Note that d}™ appears in the path weight for both VC and VM,
whereas dzYC and d}™ are specific to VC and VM, respectively. Also,
recall from Section 3.2 that the recursive formulas above apply to
both the light sub-paths ¥ and the eye sub-paths z.

4.1 Sub-Path Vertex Data

As we trace a sub-path, we update and store the quantities d;,
d}¢ and d}™ at each vertex. Their formulas are the same for all light
light and eye vertices, with the only exception for y; and z;. The
reason is that we do not consider path sampling techniques with
zero eye sub-path vertices, as the probability of hitting the camera
lens is usually very low (or even zero in the case of a pinhole camera
model). Also, recall from Section 2.3 that we do not store yo and
zo. The precise data we store at every sub-path vertex are:

connect 1 connect N
yi:dy™M = p—;gace = mid¥= p;tom =6
<_
R — dc=0 (32)
(_
P— M =0 (33)
p&““ 17vem
. VM 1
Yi, %t d; = ? (34)
dv° = ?z 1 M ? L d© 35
i —7 Nvem + ;=1 + Poi—2a;—1 (35)
<§_ 1 VCM
= (1 e e Paad) G)
i 'VCM

connect trace

In the equations above, pg and py*™ account for the fact that
different techniques may be used for sampling a vertex on a light
source or on the eye lens, depending on whether it will be connected
to a sub-path or used to start a new sub-path. The total number of
light sub-paths, njign;, is the number of samples the eye connection
technique (VC, s, 1) takes. We have obtained d° and d}" by recur-
sively expanding Wyc,;—1 and Wyw,;—1 in equations (29) and (30).
Note that the three floating point quantities d; are the only path
weight related data that we need to store with the sub-path vertices.

4.2 Full Path Weight

The weight for a full path constructed from a light sub-path 3 with
s vertices and an eye sub-path z with ¢ vertices is given by

1
Wy,s—1(Y) + 1 4+ Wy -1(Z) "

Wy,s,t = (37)
This equation is the same as (19), but we also include it here, for
easy reference. We will next show how to compute W, s—1(¥) and
Wy,t—1(z) from the vertex quantities d;, depending on the tech-
nique v € {VC, VM}. The general-case formulas for VC and VM
(i.e. for s > 1 and ¢ > 1) follow directly from (29) and (30). Note
that due to the symmetry in the notation for light and eye sub-paths,
these general-case formulas are the same for y and z.

Vertex merging (s > 1,¢ > 1). A path is constructed by merging
light sub-path vertex ys—1 and eye sub-path vertex z;—1:

VCM

Won,s—1(7) = ==L + Posad™; (38)

Nvem

VCM

Wym,t—1(Z) = Gt +$<7,t—2 diYy. (39)

Tlvem

Vertex connection (s > 1,¢ > 1). A path is constructed by con-
necting the light vertex y—1 to the eye vertex z;_1:

Evc,s—l(y) = ?@ 1(77VCM +d 1+ pa s—2 d) (40)

?t 1(77VCM+dt 1+$at 2dt 1) (41)

Wve,t— 1

Vertex connection (s =0). The eye sub-path vertex z;_1 is sam-
pled on a light source, i.e. the light sub-path has zero vertices:

Wye,s-1(¥) =0 (42)

Bye,t—1(2) =PI dy™ + pi™s Po—adiSy. (43)

Vertex connection (s =1). The eye sub-path vertex z:—1 is con-
nected to vertex yo on a light source (a.k.a. next event estimation):

o

Wye,o(Y) = connect)
Po
trace (—
Becs1(z) = 20 &) P (hen+ A+ P2 diS1). (45)

pgonnecl (y)
Vertex connection (¢ = 1). The light sub-path vertex y_1 is con-

nected to vertex zo on the eye lens (a.k.a. eye/camera projection):

plrace() ps 1
p«(,)onneu(z) nll

Wyeo(Z) = 0. @7)

Recall that 7j;gn is the total number of light sub-paths, which is the
number of samples this eye connection technique uses.

Evc,sfl(y) = (77 CM+ch}wl+$cr 5—2 ds 1) (46)

@ light sub-path vertex
@ eye sub-path vertex

sampled path sampled path

reverse pdf evaluation reverse pdf evaluation
Figure 3: Reverse pdf evaluation. Left: The VM pdf for the uni-
directionally sampled segment is evaluated by interpreting y1 as
the point where two “merged” vertices coincide. Right: The direc-

tional sampling pdf for a vertex-merged segment is evaluated at the
eye sub-path vertex z1 with directions yoy1 and z1z6.

4.3 Reverse Pdf Evaluation

Having constructed a path segment unidirectionally or via an ex-
plicit vertex connection, evaluating the pdf for vertex merging is
straightforward, as it can also sample the segment. This is illus-
trated in Figure 3 left, where the “merged” vertices coincide at y;.

The opposite case, shown in Figure 3 right, is slightly more com-
plicated, as vertex merging evaluates light transport along approxi-
mate paths that cannot be sampled any other way. Nevertheless, we
can still evaluate the pdf for directionally sampling a similar seg-
ment along the same path edges, as shown in the figure. The pdf
for explicit vertex connection is evaluated by considering the actual
connection edge between the corresponding light and eye vertices.
That is, in the example in Figure 3 right, for a connection between
yo and z; we have pve.1 = Po(¥) Po(Z) P1(Z), and for a connec-
tion between y1 and zo we have pyc 2 = ?o ?1 ?0 (Z)

5 Special Cases

In this section, we discuss how to handle infinite light sources and
orthographic cameras with multiple importance sampling, and how
to deal with materials and light sources whose definitions involve
delta distributions. We also show how to apply our recursive weight
evaluation scheme to bidirectional path tracing and to bidirectional
photon mapping.

5.1 Infinite Light Sources

Light sources that are located very (or even infinitely) far away from
the rest of the scene geometry are usually not defined via emitting
surfaces but via directional incident radiance distributions at the
receiving points. This prevents the straightforward use of infinite
lights in VCM, as they cannot be handled by the path integral (1)
which only considers area integration [Veach 1997, p. 222].

A common approach is to turn infinite lights into finite area lights
by mapping their directional emission onto a large sphere that sur-
rounds the scene and emits inwards (with properly scaled power).
These area lights are naturally handled by the path integral, but they
only approximate the incident radiance distribution of the original
infinite light. Enlarging the sphere improves the approximation ac-
curacy, but can cause numerical issues due to the large distance be-
tween the light and the scene and also due to the small solid angles
involved in the emission sampling for light sub-paths (see Figure 4).

We can avoid the problems by handling infinite lights in their orig-
inal formulation, i.e. using solid angle integration. Paths involving
an infinite light source now have the form X = XX . .. X), where
we have replaced the point xo with a direction xj. We start a light
sub-path y by first sampling y;, (deterministically for directional

@ light sub-path vertex
2 light sub-path direction

Figure 4: Left: Turmng an infinite light source to a ﬁmte spherical
light allows for expressing path pdfs w.r.t. a product area measure,
but is only approximate and can lead to numerical inaccuracies.
Right: We avoid the issues by handling infinite lights via solid angle
integration, and derive the corresponding path pdfs for use in MIS.

lights). We then sample a point ¥; on a plane perpendicular to
Yo and project it onto the scene along y, to obtain y: (see Fig-
ure 4 right and also Pharr and Humphreys [2010, p. 714]). We pre-
serve the path pdf notation used so far, but accommodate for the
changes in the path geometry and sampling procedure via the fol-
lowing modifications:

connect (connect (trace

* P NY) =5 0) and pg*“(y) = pg"“(¥o) are now
expressed w.r.t. the solid angle measure,

e 50(F) = Po.0(F) = po(yoeyiy2) is now a solid angle
probability den51ty as well,

trace (

. go(y) =1,asno pdf measure convers1on is needed anymore
(a consequence of bt po(¥ ﬁ, o(¥) above),

° ?1 = p(y1) cos Olﬁo, where 61, is now the angle be-
tween the normal at y; and —yj.

The pdf modifications for z), = y, and zx_1 = y1 are symmetric.

5.2 Orthographic Cameras

When an orthographic camera model is used, the same modifica-
tions we made to the path geometry and the sub-path pdfs for in-
finite lights apply on the eye side as well. That is, vertex xj in X
is first replaced with a direction Xj,, and then the pdf modifications
above also apply to zy = y3, and z1 = y5,_;.

5.3 Point and Directional Light Sources

Omnidirectional and spot lights have infinitely small areas, and di-
rectional lights emit in a single direction. Such light sources cannot
be hit by random rays, as their emission is defined via a delta dis-
tribution, i.e. we have pvc,o = 0. The light sub-path quantities d;
then become identical to the eye sub-path quantities d;, minus the
Tiight Tactor in dy™:

connect 1

yi:di™ = P 7 T ? (48)
¢ = (49)
M =o. (50)

Recall that the eye sub-path quantities were originally defined dif-
ferently because we do not allow randomly hitting the eye lens.
Also, equation (44) simplifies to Wvc,0(¥) = 0. Finally, since emis-
sion is defined only at a single point or in a single direction, we set
the “connect” and “trace” probabilities in equations (43) and (45)
to 1, since the light source sampling is deterministic.

5.4 Specular Materials

Directional scattering from materials like mirror and glass is de-
fined using delta distributions that cannot be handled by Lebesgue
integration. In practice, this means that path vertices with such
delta BSDFs cannot be connected to or merged with other vertices.
Hence, certain path sampling techniques become impossible, and
their zero probabilities need to be accounted for in the MIS weights.
Specifically, if specular scattering is sampled at vertex x; in a ran-
dom walk, then:

pve,i =0 Pveit1 =0 pwi+1 =0 (51)
Q. .0
Xi—1>~ Xi+1 Xi—1 -7 Xitl Xi—1Dwge< Xitl
Xi X; X

Also, since the scattering direction at X; is deterministic, we set:

Doit1 = Do (Xis15XisXip) =

! (52)
%o’,ifl = Po(Xic1+XiXip1) = 1.
When the BSDF is a mixture of distributions (e.g. reflection and
refraction), the pdfs in (52) are equal to the probability of choos-
ing the particular specular scattering component at x; in the ran-
dom walk. Note also that since we do not allow randomly hitting
the camera, purely specular paths, i.e. LS™FE paths (using Heck-
bert’s [1990] regular expression notation), can only be sampled uni-
directionally, and thus have the trivial MIS weight of 1.

We can account for the zero-probability techniques in the path
weight as we trace the sub-paths. If the scattering event at vertex
i—1 is specular, then the d; quantities for vertex ¢ simplify to:

Vi, zi :di =0 (53)
d° = ?ifl y o dC 54
i = ? o,i—2 Uj—1 ()
VM ?ifl VM
di -] ?o‘,i72 di—l- (55)

Note that with these modifications, our scheme correctly handles
the cases where the BSDF is a mixture of specular and non-specular
components. Even if we sample specular scattering at vertex ¢ —1 in
the random walk, we do not modify its weight quantities d;—1. The
vertex is still stored and used for connection and merging to con-
struct other paths, for which the weight formulas from Section 4.2
apply as usual.

5.5 Bidirectional Path Tracing

The path weight evaluation scheme from Section 4 can be easily ap-
plied to traditional BPT by restring the formulas to only account for
vertex connections. This is achieved by simply setting 7vem = 0 in
equations (35), (40)-(47), and also eliminating the vertex quantity
dy™. With these modifications, our scheme becomes nearly identi-
cal to the one proposed by van Antwerpen [2011a; 2011b].

5.6 Bidirectional Photon Mapping

Bidirectional photon mapping [Vorba 2011] is a special case of
VCM that uses multiple importance sampling for vertex merging
only. Analogously to the bidirectional path tracing case above, re-
stricting the weighting to vertex merging techniques is as simple
as setting the terms involving mvem in equations (33), (36), (38)
and (39) to zero, and also eliminating the vertex quantity d;°.

6 Extensions

In this section, we first discuss how to accommodate per-pixel ver-
tex merging radii in our MIS weight accumulation scheme, and then
go on to describe a progressive VCM variant that is much more
memory-efficient than the one presented in Section 2.3.

6.1 Per-Pixel Merging Radius

The merging radius r is an important VCM parameter that controls
the performance of the vertex merging techniques and their relative
weights in the combined estimator (11). The optimal radius size
may vary across the scene, however our MIS weight accumulation
scheme from Section 4 implicitly assumes that all merging queries
use the same global radius r. This is because the cumulative sub-
path vertex quantities d;° and d}" depend on r via nvcy. If we
want to use different merging radii at different locations in the scene
and still obtain correct MIS weights, we need to make the vertex
quantities independent of r. To do this, we avoid computing and
storing d;° and d;™ at every vertex during sub-path construction,
and instead keep track of two new quantities, ¢, and c}™:

connect connect
vem _ Po 1 vem _ Po Tlight
1:dy = = S (56)

y T T e
ST A€ g 57)
LT 1
M =0 (58)

VCM 1
Yis Zitdp = ? (59)
?’—1 Vi —
i = Lo (&% + Tl (60)

o :%(1 +‘5[,,i,2c§“_“1) 61)

For any vertex, d}° and d}™ can be computed as follows:

di = i + mvew i (62)
VM CXC VM
di" = Tvew +c (63)
'VCM

The evaluation of 7vem, and thus of d}¢ and d}™, can now be post-
poned to the point when an actual pixel estimate is constructed us-
ing a particular eye vertex. This allows us to choose a different
radius r for every eye sub-path, e.g. derived from the pixel foot-
print. Note that for any given full path we must use the same r in
the MIS weights of all possible techniques, so they sum up to one.

6.2 Memory-Efficient Implementation

In Section 2.3 we described a two-stage implementation of the
VCM algorithm, where we first trace all light sub-paths and store
their vertices, similarly to photon mapping. Since we also use these
vertices for connections in the second stage, we need to cache their
associated BSDF structures as well. In some renderers, the shad-
ing structure at a surface point can be as large as 1KB!, requiring
gigabytes of storage for millions of light vertices. This memory
issue does not appear in bidirectional path tracing (BPT), where
pixels are rendered independently and every pair of light and eye

I'Shading structures often store the results from multiple texture queries,
local geometric and shading coordinate frames and derivatives, as well as
reflectance distribution parameters.

sub-paths is immediately discarded upon connection. Photon map-
ping can also maintain a low memory footprint, as it always evalu-
ates the BSDF at eye vertices, thereby avoiding the need for storing
shading data at light vertices.

To reduce the memory footprint of light vertices, we modify pro-
gressive VCM to operate in a single stage as follows. At every iter-
ation, for each pixel we first trace one light sub-path. We then store
its vertices in a separate list without their BSDF structures, just like
in photon mapping, but with the addition of the three cumulative
weight quantities. After that, we trace an eye sub-path through the
pixel. Every eye vertex is connected to the light sub-path and also
merged with all nearby light vertices from the previous iteration.
Finally, we discard both sub-paths. After processing all pixels, we
build a range search acceleration structure over the light vertex list
and dispose the structure from the previous iteration. Rendering
begins by tracing an initial set of light sub-paths that are only used
for merging at the first iteration. Alternatively, we can skip merging
at the first iteration, and scale the VM contributions at the second
iteration by a factor of two.

With the above modifications, the VCM algorithm becomes very
similar to traditional BPT, with the extension of caching all light
vertices at every iteration and then using them for merging at the
subsequent iteration. By delaying vertex merging by one iteration,
its memory footprint becomes almost as low as that of photon map-
ping, with only three additional floats per light vertex.

7 Conclusions

In this technical report, we addressed important aspects of the prac-
tical implementation of the vertex connection and merging (VCM)
algorithm [Georgiev et al. 2012]. We first derived a computationally
efficient scheme for evaluating the multiple importance sampling
(MIS) path weights. This scheme avoids redundant computations,
and more importantly, significantly reduces memory access, mak-
ing the algorithm well suited for GPU implementation. We then
described how to handle special cases such as infinite and singular
light sources, cameras and materials. We finally discussed how to
accommodate per-pixel merging radii in the MIS weights and how
the progressive VCM algorithm can be restructured to significantly
improve its memory-efficiency.

Limitations. One constraint that our recursive path weight evalua-
tion scheme poses is that no terms in the weight can depend on the
(sub-)path length. For example, we cannot base the Russian roulette
path termination probability or the number of vertex connections on
the eye sub-path length. The reason is that we need to be able to
compute these quantities when we accumulate reverse probabilities
during the /ight sub-path tracing, without any knowledge of the full
path length. Van Antwerpen [2011a] also points out this limita-
tion. One way to mitigate it is to consider such terms constant or
completely exclude them from the MIS weight. Alternatively, per-
vertex storage can be augmented with additional partial weights that
are specialized for connections to sub-paths of different lengths.

Reference implementation. We provide an implementation of the
VCM algorithm that uses our path weight evaluation scheme in the
open source renderer SmallVCM [Davidovi¢ and Georgiev 2012].
This implementation covers all special cases discussed in Section 5.
The renderer also includes traditional path tracing and light tracing.

Acknowledgements. The author would like to thank Tomas Davi-
dovi¢ for implementing SmallVCM, and Milo§ HaSan and Jaroslav
Kfivanek for the insights into handling infinite lights. Also thanks
to Anton Kaplanyan, Tom4s Davidovi¢ and Jaroslav Ktivanek for
proofreading the text.

References

DAVIDOVIC, T., AND GEORGIEV, 1., 2012. SmallVCM renderer.
http://www.smallvem.com and https://github.com/SmallVCM.

GEORGIEV, 1., KRIVANEK, J., DaviDovI¢, T., AND
SLUSALLEK, P. 2012. Light transport simulation with
vertex connection and merging. ACM Trans. Graph. 31
(December). (Proc. SIGGRAPH Asia 2012).

HECKBERT, P. S. 1990. Adaptive radiosity textures for bidirec-
tional ray tracing. In SIGGRAPH ’90, ACM, New York, USA.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based Ren-
dering: From Theory To Implementation, 2nd ed. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

VAN ANTWERPEN, D. 2011. Recursive MIS computation for
streaming BDPT on the GPU. Tech. rep., Delft University of
Technology.

VAN ANTWERPEN, D. 2011. A survey of importance sampling
applications in unbiased physically based rendering. Tech. rep.,
Delft University of Technology.

VEACH, E. 1997. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Standford Univeristy.

VORBA, J. 2011. Bidirectional photon mapping. In Proc. Central
European Seminar on Computer Graphics (CESCG ’11).

