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Fig. 1. We propose PBIR-NIE, a physics-based inverse rendering pipeline that optimizes an object’s shape, glossy surface reflectance, and non-distant
lighting representation. Our method faithfully recovers the shiny and specular appearance, produces relighting results with high fidelity, and accurately
captures geometric details from a rough visual hull initialization.

Glossy objects present a significant challenge for 3D reconstruction from
multi-view input images under natural lighting. In this paper, we introduce
PBIR-NIE, an inverse rendering framework designed to holistically capture
the geometry, material attributes, and surrounding illumination of such
objects. We propose a novel parallax-aware non-distant environment map as
a lightweight and efficient lighting representation, accurately modeling the
near-field background of the scene, which is commonly encountered in real-
world capture setups. This feature allows our framework to accommodate
complex parallax effects beyond the capabilities of standard infinite-distance
environment maps. Our method optimizes an underlying signed distance
field (SDF) through physics-based differentiable rendering, seamlessly con-
necting surface gradients between a triangle mesh and the SDF via neural
implicit evolution (NIE). To address the intricacies of highly glossy BRDFs
in differentiable rendering, we integrate the antithetic sampling algorithm
to mitigate variance in the Monte Carlo gradient estimator. Consequently,
our framework exhibits robust capabilities in handling glossy object recon-
struction, showcasing superior quality in geometry, relighting, and material
estimation.

1 INTRODUCTION
The joint reconstruction of an object’s surface geometry, material
reflectance, and its surrounding illumination, commonly referred
to as inverse rendering, stands as a foundational task in computer
vision and graphics for 3D content creation, with applications across
various fields: film making, game production, product design, and
AR/VR. Despite its broad applicability, the reconstruction of non-
diffuse objects remains particularly challenging due to the presence
of specular reflections. These reflective surfaces introduce incon-
sistencies in color when captured from multiple viewpoints, cre-
ating difficulties for multi-view reconstruction methods (such as
NeRF [Mildenhall et al. 2020] and 3D Gaussian Splatting [Kerbl et al.
2023]) that heavily rely on view consistency and feature matching.

Recovering the appearance of glossy objects presents challenges
due to the high-frequency reflections of complex surrounding en-
vironments. Previous inverse rendering methods often rely on an
infinitely distant 2D environment map [Munkberg et al. 2022], either
in a discretized form or parameterized using mixtures of spherical
Gaussians [Zhang et al. 2021b; Jin et al. 2023] for representing the
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background. However, the infinite-distance assumption is easily
violated in real-world capture setups. One solution for capturing
complex background parallax effects is to represent the lighting as a
neural radiance field (NeRF) [Mildenhall et al. 2020], as demonstrated
by prior works [Ling et al. 2024;Wang et al. 2024; Zhuang et al. 2023].
Utilizing NeRF as a background can however be computationally
expensive, and the absence of an efficient importance sampling
method further complicates its practical use in inverse rendering
applications. To address this, we propose a lightweight background
representation, Envmap++, designed to efficiently model both near-
field and far-field background illumination with a parallax-aware
environment map. This representation strikes a balance between
quality and performance, as demonstrated in our glossy object re-
construction task.
Prior inverse rendering works [Luan et al. 2021; Cai et al. 2022;

Sun et al. 2023] rely on good initialization of the surface topology
(e.g. via neural rendering methods such as NeuS [Wang et al. 2021]),
and further refine the geometric details with a differentiable ren-
derer. On the other hand, neural implicit evolution (NIE) [Mehta
et al. 2022] formulates a level-set evolution method for parametri-
cally defined implicit surfaces that does not require mesh extraction
to be differentiable. We show that this method can be combined
with a physics-based differentiable renderer and allows topology
change during optimization. We integrate NIE into our framework
and optimize an underlying neural signed distance field (SDF). This
integration allows our method to handle objects with complex topol-
ogy, including thin structures, holes, and other subtle geometric
features; thus, it is robust to poor initialization. Our framework,
dubbed PBIR-NIE, not only captures the geometry, material proper-
ties, and surrounding illumination of glossy objects but also handles
topology changes seamlessly.
Lastly, when dealing with highly specular BRDFs (i.e. with very

low roughness) in physics-based differentiable rendering, the naively
estimated geometric gradients can be very noisy. Zhang et al. [2021a]
demonstrate that antithetic sampling can significantly reduce the
variance in such cases. However, despite enabling faster conver-
gence, this method can be tedious to implement, especially for
indirect illumination where the number of light paths grows ex-
ponentially. We propose a simple yet efficient modified variant of
antithetic sampling, incorporating Russian roulette and roughness
regularization beyond secondary bounces of each light path. This
variant is easy to implement and we show it is robust for glossy-
object reconstruction.
In summary, our contributions include:

• Envmap++, a lightweight non-distant lighting representation that
efficiently models both the near- and far-field background illu-
mination with a parallax-aware environment map, overcoming
limitations of infinitely distant and NeRF emitters.

• Integration of neural implicit evolution into PBIR, allowing for
topological changes and enhancing the framework’s ability to
handle complex object geometries.

• An efficient antithetic sampling variant that improves the han-
dling of highly glossy BRDFs in differentiable rendering with
gradient variance reduction for fast and accurate reconstruction.

• An end-to-end pipeline achieving state-of-the-art geometry, ma-
terial, and lighting estimation for glossy-object reconstruction,
enabling realistic view synthesis and relighting.

2 RELATED WORK

2.1 Neural Surface Reconstruction
Neural rendering, particularly neural implicit representation, has
seen significant advancements in 3D reconstruction in recent years.
Neural radiance fields (NeRF) [Mildenhall et al. 2020] and its vari-
ants [Müller et al. 2022; Chen et al. 2022] utilize volume rendering on
scene representations with neural density fields and view-dependent
color fields, resulting in impressive photorealism in novel view syn-
thesis. However, geometry extracted from volumetric density fields
often exhibits flawed surfaces.

Alternatively, representing the underlying geometrywith a signed
distance field (SDF) has shown promise for improved surface recon-
struction in recent neural SDF-based approaches such as NeuS [Wang
et al. 2021], VolSDF [Yariv et al. 2021], and PermutoSDF [Rosu and
Behnke 2023a] Unfortunately, when capturing glossy objects with
shiny and metallic materials (such as a soda can, a stainless ket-
tle, or a polished silver spoon), both density-based and SDF-based
approaches struggle to faithfully reconstruct the geometry.

Cai et al. [2022] leverage MeshSDF [Remelli et al. 2020], a differ-
entiable version of Marching Cubes, to implicitly optimize an SDF
by rendering the extracted mesh. However, this method is computa-
tionally expensive. Conversely, Vicini et al. [2022] and Bangaru et al.
[2022] reparameterize the discontinuities in direct SDF rendering to
avoid meshes entirely, but this approach complicates extending the
method to multiple bounces and implementing variance reduction
techniques.

2.2 Glossy Surface Reconstruction
Recently, glossy surface reconstruction has received increased atten-
tion in the neural and inverse rendering community. Ref-NeRF [Verbin
et al. 2022] introduced integrated directional encoding, replacing
NeRF’s view-dependent color field with a representation of reflected
radiance based on surface normals, which improved the recon-
structed surface quality. This approach was extended to SDF-based
frameworks in Ref-NeuS [Ge et al. 2023]. SpecNeRF [Ma et al. 2023]
proposed 3D Gaussian-based encoding to enhance NeRF’s reflec-
tion modeling capabilities. Neural directional encoding [Wu et al.
2024] transfers feature-grid-based spatial encoding into the angu-
lar domain and considers near-field specular interreflections with
cone tracing, further improving the modeling of complex reflections.
Neural plenoptic function [Wang et al. 2024] proposed to represent
global illumination via a 5D representation based on NeRFs and
raytracing. Our most relevant baseline is NeRO [Liu et al. 2023],
which introduced a two-stage, NeuS-based pipeline that explicitly
incorporates the rendering equation into the neural reconstruction
framework, demonstrating superior geometry quality on reflective
objects. However, their pipeline relies on approximation to ensure
the computation is tractable, for instance, using neural networks to
predict occlusion and indirect illumination. While our work shares
a similar goal, we primarily approach the problem by solving the
rendering equation without approximation.



PBIR-NIE: Glossy Object Capture under Non-Distant Lighting • 3

2.3 Material and Lighting Estimation
Beyond surface geometry, inverse rendering [Marschner 1998; Ra-
mamoorthi and Hanrahan 2001] typically also involves estimat-
ing the material properties (e.g., SVBRDF) and, in some cases, the
surrounding illumination (depending on the capture setup). Tradi-
tional data-driven acquisition methods [Xia et al. 2016; Dong et al.
2014, 2010; Aittala et al. 2013; Nam et al. 2018, 2016; Zhou et al.
2016] often assume sparsity in spatially-varying surface reflectance
and frame the capture as a complex non-linear optimization prob-
lem. Similarly, recent neural reconstruction methods address this
analysis-by-synthesis problem through differentiable rendering for
intrinsic decomposition. They employ various differentiable ren-
dering techniques, including neural renderers (PhySG [Zhang et al.
2021b], NeRFactor [Zhang et al. 2021c], TensoIR [Jin et al. 2023] and
others [Boss et al. 2021a,b; Zhang et al. 2022a,b; Kuang et al. 2022;
Srinivasan et al. 2021]), fast differentiable rasterizers [Munkberg
et al. 2022] or differentiable Monte Carlo raytracers [Luan et al.
2021; Cai et al. 2022; Sun et al. 2023; Hasselgren et al. 2022]. Our
approach operates within the differentiable path tracing framework,
parameterizing spatially-varying surface reflectance with an ana-
lytic microfacet BRDF model using the GGX distribution [Walter
et al. 2007a]. However, unlike previous methods that typically repre-
sent lighting with a 2D distant environment map, we also consider
near-field background illumination, crucial for glossy object recon-
struction. Similar to Ling et al. [2024] and NeRO [Liu et al. 2023]
that represent the background illumination with non-distant envi-
ronment emitters (either a NeRF or two direct-indirect separable
lighting MLPs), we introduce a lightweight, parallax-aware environ-
ment map representation. This approach demonstrates robustness to
near-field and far-field lighting conditions while remaining efficient
in inverse rendering optimization.

3 PRELIMINARIES
In this section, we briefly revisit mathematical and algorithmic pre-
liminaries related to physics-based differentiable rendering [Zhao
et al. 2020], and discuss the advantages and disadvantages of the
differentiable renderer we use and how it affects our pipeline.
Given a virtual object described by parameters 𝝃 , we render the

image with Monte Carlo rendering based on the path integral for-
mulation introduced by Veach [1997]:

𝐼 =

∫
Ω
𝑓 (𝒙) d𝜇 (𝒙), (1)

where Ω := ∪𝑁 ≥1M𝑁+1 is the path space consisting of light trans-
port paths 𝒙 = (𝒙0, 𝒙1, ..., 𝒙𝑁 ) with M being the union of all object
surfaces, 𝑓 is the measurement contribution function, and 𝜇 is the
corresponding area-product measure.

Computing image gradients involves differentiating pixel intensi-
ties in Eq. (1) with respect to 𝝃 , which is not a trivial process due
to the existence of discontinuities in the integrand. Zhang et al.
[2020a] and Bangaru et al. [2020] presented two different paradigms
for tackling this problem: one directly track the discontinuities and
one eliminates the discontinuities via reparameterization. Both can
accurately differentiate Eq. (1).

Given estimation of the gradient d𝐼
d𝝃 , we are able to reconstruct

scene parameters from images using an optimization approach:
render images using the initial scene parameters, compute the loss
with regard to the target images, obtain the gradient of the loss with
respect to the scene parameters, update the scene parameters using
gradient descent and repeat until convergence.

4 OUR METHOD
Our PBIR-NIE pipeline reconstructs the shape, material, and back-
ground lighting of opaque objects from multi-view images with
known camera poses. While it can handle diffuse objects, it is specif-
ically designed to perform well on glossy ones, which are more
sensitive to light reconstruction quality due to reflected background
details. Previous methods often use an environment map to rep-
resent background illumination, assuming light originates from
infinitely far away. However, this results in blurry reconstructions
under indoor lighting, often compensated by increased roughness.
To address this, we introduce a new model Envmap++ (Sec. 4.1),
a lightweight non-distant lighting representation that is suitable
for both near-field and far-field lighting conditions. Additionally,
optimizing the shape and material of glossy objects requires special
considerations; for shape optimization, we employ neural implicit
evolution with careful initialization to ensure robust geometry han-
dling (Sec. 4.2); we introduce a modified version of antithetic sam-
pling [Zhang et al. 2021a] for variance reduction in the Monte Carlo
gradient estimation (Sec. 4.3).

The differentiable renderer is a crucial component of our pipeline.
We have selected Mitsuba 3 [Jakob et al. 2022b] due to its imple-
mentation of numerous state-of-the-art techniques pertinent to our
application. However, one limitation constrains our choice of scene
primitives: although neural networks serve as effective representa-
tions for primitives, evaluating them within the rendering loop is
suboptimal. Mitsuba 3 supports two evaluation modes—megakernel
and wavefront—enabled by its auto-differentiation engine, Dr. Jit
[Jakob et al. 2022a]. While the megakernel mode is significantly
more efficient than the wavefront mode for Monte Carlo rendering,
it currently does not support the evaluation of neural networks
within the kernel. Conversely, the wavefront mode allows for such
evaluations but incurs substantial performance and memory costs.
To facilitate practical applications, we opt for the megakernel mode,
trading some flexibility for efficiency by evaluating all neural net-
works prior to the rendering step. This trade-off plays an important
role in our pipeline design.

4.1 Envmap++: Non-Distant Environment Map
We propose representing the background using a deformed spher-
ical emitter, optimizing its vertices to simulate the parallax effect.
Assume (without loss of generality) the object and cameras are
bounded by a unit sphere S. The emitter consists of a meshMenv
deformed from the starting sphere 𝑆 . Each vertex 𝑥M of Menv is
represented as 𝑥 − 𝑛(𝑥)𝑑 (𝑥), where 𝑥 and 𝑛(𝑥) are the correspond-
ing vertex and vertex normal onS, and 𝑑 (𝑥) > 0 is the displacement
amount to be optimized. Furthermore, 𝐿e (𝑥) is the optimized uni-
formly emitted radiance of each vertex. The normals point inside
the sphere to ensure visibility. To handle the wide range of 𝑑 , we
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Fig. 2. Overview of our PBIR-NIE pipeline. Our pipeline takes a set of multi-view images capturing a glossy object and an initial shape as input. It then
reconstructs the scene’s geometry, material properties, and lighting using a physics-based inverse rendering (PBIR) approach. The iterative refinement process
includes: 1) Forward Pass: Rendering an image by employing physics-based differentiable rendering. This involves using an explicit mesh extracted with a
non-differentiable Marching Cubes algorithm to represent the neural implicit surface for shape, and material networks for surface properties, while leveraging
information from input training views. Additionally, Envmap++ is utilized for enhanced lighting representation, replacing the standard infinite-distance
environment map to handle non-distant background illumination. 2) Backward Pass: Comparing the rendered image to the ground truth and computing
gradients with respect to scene parameters. We use neural implicit evolution (NIE) [Mehta et al. 2022] to facilitate the backpropagation of gradients from the
extracted mesh to the neural implicit surface, bypassing the non-differentiable extraction step. 3) Update: Adjusting scene parameters (geometry, material,
lighting) via backpropagation to minimize the difference between the rendered and ground truth image.

adopt the inverted sphere parameterization from NeRF++ [Zhang
et al. 2020b] and optimize 𝑟 (𝑥) ∈ (0, 1) such that 𝑑 (𝑥) = 1

𝑟 (𝑥 ) − 1.
This adaptation leads to our light representation termed Envmap++.

More generally, for any bounding sphere, Menv can be repre-
sented as:

Menv = {𝑠
(
𝑥 − 𝑛(𝑥) ( 1

𝑟 (𝑥) − 1)
)
+ 𝑐 | 𝑥 ∈ S} (2)

where 𝑠 ∈ R>0 is a scaling factor (bounding sphere radius) and
𝑐 ∈ R3 is the center of the bounding sphere.

In our implementation, we employ a deformed cube for the mesh
structure ofMenv to ensure even triangle distribution, analogous to
cube mapping techniques. Direct optimization of 𝑟 (𝑥) and radiance
values 𝐿e (𝑥) can be unstable. Hence, we utilize small MLPs with
permutohedral encoding [Rosu and Behnke 2023b] to predict these
values for a given 𝑥 ∈ S, where 𝑥 is represented as a 3D unit
vector when querying the encoding, to avoid poles. Laplacian loss
Llap (Menv) is further applied to smooth the background emitter
mesh.
While the actual background rarely resembles a sphere, this ap-

proximation suffices in practice as a non-distant light representation.
When vertices are positioned infinitely far away (𝑟 → 0 in the limit),
this representation approaches the traditional environment map,
accommodating a mixture of near-field and far-field lighting sce-
narios. In addition, since this is simply a textured area light, we can
importance sample it without additional effort.

4.2 Shape Reconstruction
4.2.1 Shape Initialization. Our pipeline uses an initialization stage
to start with potentially imperfect predictions of object shape, re-
flectance, and illumination, similar to Neural-PBIR [Sun et al. 2023].
In a later stage, initialized by these predictions, we refine the initial
results to obtain the final high-quality reconstruction. We found
two initialization to perform the best in different cases. First, our
pipeline utilizes the initial SDF reconstructed by PermutoSDF [Rosu
and Behnke 2023b] due to its robustness in handling diffuse and
rough glossy objects.
Second, for highly glossy objects where PermutoSDF can fail

and produce holes, we implement a voxel-based visual hull algo-
rithm [Laurentini 1994] to obtain the initial shape. We first estimate
a set of masks based of the input images using a salient object
segmentation model such as U2-Net [Qin et al. 2020]. Then we back-
project the voxels within the scene bounding box to determine if
they are within the foreground mask for a given view. We keep a
voxel if the fraction of input views where it falls into the foreground
mask is above a given threshold. This approach tends to produce
fewer holes and broken geometry features, despite having less ac-
curate boundaries than the result from PermutoSDF. The resulting
occupancy grid can be transformed into an SDF using a Euclidean
distance transform and serve as our initialization.

4.2.2 Neural Implicit Evolution. Specular highlights or inaccurate
segmentation can create holes in our initial mesh, so our shape
optimization routine needs to handle topological changes to cor-
rect these issues. Further, many objects have thin features such
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Fig. 3. Neural Implicit Evolution (NIE). Here we illustrate our PBIR-
NIE pipeline for optimizing the underlying geometry using neural implicit
evolution (NIE) [Mehta et al. 2022]. We represent the geometry with a neural
signed distance field (SDF) and employ a surface extraction algorithm, such
as non-differentiable marching cubes, to obtain a discretized surface mesh.
Next, we compute mesh vertex gradients using physics-based differentiable
rendering (PBDR) and update the neural SDF through NIE with the obtained
velocity field.

as cup handles. While representing the shape using a neural im-
plicit function would be an ideal solution, only a few works [Cai
et al. 2022; Bangaru et al. 2022; Vicini et al. 2022] have successfully
combined this approach with a physically based differentiable ren-
derer despite its popularity in neural surface reconstruction. The
root of this problem is that accurately estimating the derivative of
Equation 1 requires handling a boundary term [Zhang et al. 2020a],
which requires tracking discontinuities at object boundaries, but it
is particularly challenging for implicit surfaces.
Our pipeline PBIR-NIE incorporates neural implicit evolution

(NIE) [Mehta et al. 2022] as the backbone for propagating surface
gradients from mesh-based differentiable rendering to the underly-
ing neural SDF. Given a neural implicit function Φ(𝑥 ;𝜃 ), where 𝜃
is the set of parameters of a neural network, we use its isosurface
M = {𝑥 | Φ(𝑥 ;𝜃 ) = 0} to represent the object we are reconstruct-
ing. NIE optimizes this surface by first extracting a mesh using
non-differentiable Marching Cubes and obtains the vertex gradients
w.r.t the training loss, 𝜕𝐿𝜕𝑥 , through a differentiable renderer. It then
constructs a flow field𝑉 = − 𝜕𝐿

𝜕𝑥 and creates the target implicit func-
tion 𝜙 (𝑥) = Φ(𝑥 ;𝜃 ) − Δ𝑡 (∇Φ(𝑥 ;𝜃 ) · 𝑉 ), where Δ𝑡 is the time step.
Finally, the implicit function Φ(𝑥 ;𝜃 ) is optimized by minimizing its
difference with the target implicit function using gradient descent:

min
𝜃

𝐽 (𝜃 ) = 1
|M|

∑︁
𝑥∈M

∥𝜙 (𝑥) − Φ(𝑥 ;𝜃 )∥2 . (3)

NIE is provably better than MeshSDF (further reading in [Mehta
et al. 2022]) and it can be integrated into an existing differentiable
renderer without requiring differentiable marching cubes; however,
only minimal examples of differentiable rendering are shown in the
original NIE work; our method is the first to use it in a full inverse
rendering pipeline for geometry, materials and lighting.
We introduce two adjustments to NIE for reconstructing glossy

objects. First, we clamp the magnitude of the flow field. When the
roughness of the object is very low, 𝜕𝐿

𝜕𝑥 becomes extremely high
and disturbs the training stability. With the formulation of NIE, as
long as the implicit surface is evolving towards the correct direction,
the magnitude of the flow field is not important. Thus, we simply
rescale 𝜕𝐿

𝜕𝑥 so that its magnitude is at most 𝜖𝑣 .

(a) Rendering (b) Reference (FD) (c) AD w/o AS (d) Ours

Fig. 4. Antithetic Sampling. When dealing with highly glossy objects
(such as a chrome ball in Fig. 4a), traditional BSDF sampling techniques may
result in high variance gradients. In Fig. 4b, we compute finite differences
and display the ground-truth gradient image corresponding to the shape
translation of a glossy object with a low roughness value of 0.05. Without
antithetic sampling (Fig. 4c), the gradient image appears noisy, leading to
unstable training. However, by applying antithetic sampling (Fig. 4d), we
achieve a significantly more reliable Monte Carlo gradient estimation with
the same number of samples.

Second, although NIE is designed to work with level set functions
(where the eikonal constraint | |∇𝑥Φ(𝑥 ;𝜃 ) | | = 1 is not enforced),
we found that the absence of this enforcement leads to degraded
results at high learning rates. To speed up training, we add the
eikonal constraint and enforce the implicit function to behave as a
signed distance function. The commonly used eikonal loss LEik =
1
2 | |∇𝑥Φ(𝑥 ;𝜃 ) − 1| |2 is in fact unstable, as demonstrated in [Li et al.
2010; Yang et al. 2023]. As a result, we use the DRLSE loss by Li et al.
[2010]:

LDRLSE (𝑠) =
{

1
(2𝜋 )2 (1 − cos(2𝜋𝑠)), if 𝑠 ≤ 1
1
2 (𝑠 − 1)2, if 𝑠 > 1

, (4)

where 𝑠 = | |∇𝑥Φ(𝑥 ;𝜃 ) | |. We usually use a weight of 1e-2 in our
experiments.

4.3 Material
4.3.1 BRDF Model. We model the material using a simplified ver-
sion of the Disney BRDF [Karis and Games 2013]. It consists of a
diffuse lobe and an anisotropic microfacet specular lobe modeled
with the GGX normal distribution function [Walter et al. 2007b]. It
is also adopted by other works for inverse rendering [Sun et al. 2023;
Luan et al. 2021; Bi et al. 2020]. Although we use an explicit mesh
for rendering, the mesh’s connectivity and topology change con-
stantly as the underlying implicit surface evolves. Thus, applying
2D textures to it is impractical. While we can encode the material
properties using an MLP, querying them at each intersection point
within the rendering loop requires turning off the megakernel mode
in Mitsuba 3, resulting in significant performance regression. In-
stead, we store the predicted material properties at the mesh vertices
and then interpolate them to estimate the material properties at
the intersection points. The meshes extracted with marching cubes
are very high-resolution, so the interpolation errors remain small.
If higher-resolution textures are desired, we can run an additional
stage with explicit UV mapping after the topology has stabilized.

4.3.2 Antithetic Sampling. Zhang et al. [2021a] found that using
glossy or near-specular BRDFs with traditional sampling techniques
results in high variance in gradient estimation (Fig. 4). This excessive
noise negatively impacts shape optimization. The root of this issue
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is that the derivative of the normal distribution function d𝐷
d𝜔h

grows
rapidly as the roughness decreases. The remedy they proposed is
to create an antithetic sample 𝜔 ′

h by mirroring the sampled half
vector 𝜔h along the normal direction, which has the same 𝐷-value.
Since d𝐷

d𝜔h
= − d𝐷

d𝜔 ′
h
, the derivatives cancel out and the variance of

the gradient estimation is reduced.
Since our goal is to reconstruct glossy objects, employing this

technique is essential to ensure robustness. The antithetic sample
requires us to trace an additional path. To simplifies our imple-
mentation, instead of tracing two paths at each intersection, we
render the image twice, once with normal BRDF sampling and once
with antithetic sampling, and average them at the end. For multi-
bounces, we only do antithetic sampling at the first bounce. The
same random seed is used in the two passes to ensure correlation.
This simplification is effective as demonstrated in Fig. 4d.

5 IMPLEMENTATION DETAILS
Our pipeline makes heavy use of neural networks for scene primi-
tives. All of our neural networks share the same architecture: a small
MLP with permutohedral encoding [Rosu and Behnke 2023a]. This
ensures memory efficiency while maintaining expressiveness. We
use 4 hidden layers of 32 neurons for the SDF network, and 2 hidden
layers of 32 neurons for the material network. The emitted radiance
𝐿e (𝑥) and inverted distance 𝑟 (𝑥) in Envmap++ are predicted by two
separate MLPs with 2 hidden layers of 32 neurons.
We use the Adam optimizer [Kingma and Ba 2014], with learn-

ing rates ranging from 1e-3 to 1e-4 depending on the scenes. We
optimize most scenes with 2000 iterations with a batch size of 1.
The resolution of the non-differentiable marching cubes during the
NIE step is 2563. As mentioned in Sec. 4.1, we use a sphere mesh
constructed as a deformed cube as the starting mesh. The resolution
of each face of the cube is 322.
We use a modified version of the prb_projective integrator

from Mitsuba 3 with antithetic sampling support. By default, it
supports paths of arbitrary depth using the Russian roulette stopping
criterion.

6 RESULTS
To demonstrate the effectiveness of our method, we present recon-
structions on synthetic input images and the real-world capture
dataset Stanford-ORB [Kuang et al. 2024]. We compare the recon-
structions obtained with our pipeline against three state-of-the-art
baselines: NeRO [Liu et al. 2023], Neural-PBIR [Sun et al. 2023],
and NeRF Emitter [Ling et al. 2024]. We demonstrate superior re-
construction quality in terms of geometry and lighting (Sec. 6.1).
Additionally, we conduct ablation studies to evaluate several com-
ponents of our pipeline (Sec. 6.2). Please refer to the supplement for
more results.

6.1 Comparison with Baselines
Comparison with NeRO [Liu et al. 2023]. We conducted extensive

evaluations comparing our method with NeRO [Liu et al. 2023],
focusing on the recovery of texture details and relighting quality in
scenes with glossy interreflections. Figs. 8, 9, and 12 illustrate these
comparisons in various settings. Fig. 12 demonstrates our ability

Fig. 5. Our results on Stanford-ORB [Kuang et al. 2024] dataset.

to reconstruct detailed material using interreflection, thanks to the
correct simulation of global illumination. NeRO fails at this task
because it predicts indirect lighting using a neural network. Fig. 9
highlights the relighting quality on NeRO’s glossy synthetic objects
bell, cat, and teapot. Using the same geometry as NeRO, our
method captures detailed highlights and reflections more effectively,
demonstrating superior relighting performance. Lastly, Fig. 8, we
present a detailed comparison of texture recovery through specular
reflections. Two scenes involving a coin and a mushroom placed
above a specular table demonstrate that our method successfully re-
constructs fine texture details observed through specular reflections,
whereas NeRO produces blurrier reconstructions.

Comparison with Neural-PBIR [Sun et al. 2023]. We compared our
method with Neural-PBIR [Sun et al. 2023], focusing on the recon-
struction quality of glossy objects. Due to the fact that Neural-PBIR’s
initialization stage often fails for glossy objects, we specifically eval-
uated the mesh refinement stage. Fig. 10 shows the results for three
different objects: spot, knot, and cross. Starting from the same
initial geometry obtained from a visual hull, we refined the meshes
using our physics-based inverse rendering (PBIR) approach. Our
method demonstrates superior reconstruction quality, effectively
capturing detailed highlights and reflections from the environment.
This is evident in the sharper and more detailed insets of our results
compared to those of Neural-PBIR. In contrast, Neural-PBIR strug-
gles to accurately reproduce the glossy materials and fine geometric
details, resulting in less realistic reconstructions.

Comparison with NeRF Emitter [Ling et al. 2024] and standard en-

vironment map. We evaluate our Envmap++ lighting representation
against two baselines: NeRF Emitter [Ling et al. 2024], which uses a
NeRF for background illumination, and the standard environment
map commonly used in prior inverse rendering frameworks. Since
NeRF emitter can only work under direct illumination and has no
support for antithetic sampling as of writing, we compare these
methods using diffuse objects under direct illumination. As shown
in Fig. 11, we assess the joint optimization of object shape, material,
and lighting for two scenes, Sculpture and Duck. Both objects are
placed inside an indoor roomwhere the surrounding environment vi-
olates the infinite-distance assumption of the standard environment
map. Our lightweight Envmap++ lighting representation enables
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Table 1. Geometry, relighting, and view-interpolation quality on Stanford-ORB dataset [Kuang et al. 2024].

Geometry Novel Scene Relighting Novel View Synthesis

Method Depth↓ Normal↓ Shape↓ PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓
PhySG [Zhang et al. 2021b] 1.90 0.17 9.28 21.81 28.11 0.960 0.055 24.24 32.15 0.974 0.047
NVDiffRec [Munkberg et al. 2022] 0.31 0.06 0.62 22.91 29.72 0.963 0.039 21.94 28.44 0.969 0.030
NeRD [Boss et al. 2021a] 1.39 0.28 13.7 23.29 29.65 0.957 0.059 25.83 32.61 0.963 0.054
NeRFactor [Zhang et al. 2021c] 0.87 0.29 9.53 23.54 30.38 0.969 0.048 26.06 33.47 0.973 0.046
InvRender [Zhang et al. 2022b] 0.59 0.06 0.44 23.76 30.83 0.970 0.046 25.91 34.01 0.977 0.042
NVDiffRecMC [Hasselgren et al. 2022] 0.32 0.04 0.51 24.43 31.60 0.972 0.036 28.03 36.40 0.982 0.028
Neural-PBIR [Sun et al. 2023] 0.30 0.06 0.43 26.01 33.26 0.979 0.023 28.83 36.80 0.986 0.019
PBIR-NIE (ours) 0.50 0.05 0.64 26.26 33.46 0.977 0.028 27.06 35.09 0.983 0.023

superior inverse rendering quality and geometry reconstruction,
comparable to the computationally expensive NeRF Emitter results.

Stanford-ORB [Kuang et al. 2024] results. We validate our pipeline
on the real-world inverse rendering dataset Stanford-ORB [Kuang
et al. 2024]. The results demonstrate the effectiveness of our method
in terms of geometry reconstruction, relighting, and view interpo-
lation. Our method achieves the best performance on novel scene
relighting, while being comparable to Neural-PBIR [Sun et al. 2023]
on geometry reconstruction and novel view synthesis. Qualitative
results are shown in Fig. 5, and quantitative results are summarized
in Table 1.

6.2 Evaluations and Ablations

Reference Ours (Envmap++) Envmap

Fig. 6. Ablation on Envmap++.We evaluate the quality of glossy object
appearance acquisition under non-distant background illumination using
our proposed Envmap++ vs. standard environment map lighting.

Importance of Envmap++. In this experiment, we ablate the im-
portance of our proposed Envmap++ for capturing glossy objects
in a near-field environment. We use ground-truth geometry and
compare the appearance of the glossy object with Envmap++ versus
a standard environment map. As shown in Fig. 6, a highly glossy
sculpture is placed in an indoor room, presenting strong parallax
in the background. Our Envmap++ successfully captures this non-
distant lighting, resulting in a more accurate appearance capture. In
contrast, the baseline using standard environment map lighting rep-
resentation fails to represent the near-field background illumination,
leading to poorer quality.

(a) Reference (b) Initial (c) Large Steps (d) Ours (NIE)

Fig. 7. Ablation on NIE [Mehta et al. 2022]We demonstrate the necessity
of NIE when given poor initialization.

NIE vs. Large Steps [Nicolet et al. 2021]. In this experiment, we
ablate the NIE component of our pipeline by comparing the re-
constructed geometry with fixed lighting and material against the
reconstruction produced by the Large Steps algorithm [Nicolet et al.
2021]. The Large Steps algorithm operates on an explicit mesh with
fixed topology, whereas NIE uses the explicit mesh as a proxy to
optimize an implicit surface capable of topology changes. This capa-
bility is crucial when dealing with poor initializations that contain
holes, as demonstrated in Fig. 7c and Fig. 7, where NIE outperforms
Large Steps. Additionally, the gradient clamping step described in
Sec. 4.2.2 helps stabilize the optimization process without creating
spikes, as shown in Fig. 7c.

7 DISCUSSION AND CONCLUSION
Limitations and future work. Although Envmap++ provides a

lightweight solution to address the non-distant illumination prob-
lem, its representational power is greatly limited by the underlying
geometry: a deformed cube cannot possibly model complex back-
grounds, especially when the background is very close to the object
or when occlusion is present. Additionally, it cannot accurately
model strong directional light sources due to the lack of directional
information in the radiance texture. Nevertheless, we found it satis-
factory for common scenes. Developing lightweight emitters with
greater representational power would be of future interest.

Another issue we aim to further explore is the ambiguity between
lighting and material. This ambiguity often manifests as "baking,"
for instance, reconstructed textures may incorrectly embed specu-
lar highlights. While humans can easily identify and resolve such
artifacts, optimizers see these artifacts as just one of many possible
solutions. To find the optimal solution, a strong prior in material
and lighting is necessary.
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Conclusion. In this work, we introduced an inverse rendering
framework, PBIR-NIE, for reconstructing highly glossy objects’
geometry, material, and surrounding illumination. By integrating
neural implicit evolution, we achieved robust handling of complex
object topology without the need for careful initialization. Our light-
weight background representation, Envmap++, efficiently models
both near-field and far-field background illumination, offering a
more efficient solution for inverse rendering tasks. To tackle chal-
lenges with highly glossy BRDFs, we integrated an efficient variant
of antithetic sampling, enabling faster convergence and more accu-
rate reconstruction. Our pipeline delivers state-of-the-art results in
geometry, material, and lighting estimation, enabling realistic view
synthesis and relighting.
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Fig. 8. Comparison against NeRO [Liu et al. 2023] onmaterial & lighting reconstruction.We evaluate the quality of material and lighting reconstruction
using NeRO’s glossy synthetic dataset. In this experiment, we use the same geometry as NeRO and compare NeRO’s stage II results with ours. Our PBIR-NIE
demonstrates superior reconstruction quality on the appearance of glossy objects, capturing detailed highlights from the environment more effectively.
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Fig. 9. Relighting quality comparison with NeRO [Liu et al. 2023]. Similar to the above figure, but here we render under a novel view and lighting. Using
the same geometry as NeRO, we compare the stage II results of NeRO with those of our PBIR-NIE. Oure relighting captures highlights on glossy objects in
novel environments more accurately.
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Fig. 10. Comparison against Neural-PBIR [Sun et al. 2023] on glossy object reconstruction.We evaluate the quality of glossy object reconstruction
using Neural-PBIR and our method. Due to the fact that Neural-PBIR’s initialization stage often fails for glossy objects, we specifically evaluated the mesh
refinement stage. In this experiment, we start with the same initial geometry obtained from a visual hull and compare the physics-based inverse rendering
(PBIR) mesh refinement. Our PBIR-NIE demonstrates superior reconstruction quality, effectively capturing detailed highlights from the environment. In
contrast, Neural-PBIR struggles to reproduce glossy materials and geometric details.
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Fig. 11. Comparison of lighting representations: NeRF Emitter [Ling et al. 2024], our Envmap++, and standard environment map. In these two
scenes, we jointly optimize the object shape, materials, and surrounding lighting with each lighting representation. We report the quantitative results — PSNR
for the foreground-only region and the whole image (in the format ’PSNR: (foreground / whole) dB’), as well as Chamfer distance — above the corresponding
image, and color-code the best and second bestmethod accordingly. Our pipeline successfully recovers the object’s geometry, while the standard environment
map fails in these scenes due to the violation of the infinite-distance assumption and background parallax. NeRF Emitter uses a NeRF for background lighting,
which is computationally expensive. In contrast, our Envmap++ is a lightweight representation, providing more efficient inverse rendering optimization.

Reference Ours NeRO Reference Ours NeRO

Recovered albedo of the objects’ bottoms through specular reflections.

Reference Ours NeRO Reference Ours NeRO
Fig. 12. Comparison against NeRO [Liu et al. 2023] on glossy interreflections. In these two scenes, an object (a coin or a mushroom) is placed above a
specular table, where the input views can observe the bottom of the object through specular reflections on the table. Our pipeline successfully recovers the
texture details on the object, while NeRO fails to and produces blurry reconstructions.
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8 SUPPLEMENTAL RESULTS
The figures presented below serve as supplementary material to
the comparisons discussed in Sec. 6.1 . Fig. 13 provides various
visualizations of a subset of our reconstructions of the Stanford-
ORB dataset [Kuang et al. 2024]. Figures 14 and 15 provide additional
comparisons with NeRO on their glossy synthetic dataset.
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Fig. 13. Additional results of our pipeline on Stanford-ORB [Kuang et al. 2024] data. .
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Fig. 14. Additional comparisons of our method against NeRO [Liu et al. 2023] on glossy synthetic data. Please zoom in to better compare the results.
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Fig. 15. Additional comparisons of our method against NeRO [Liu et al. 2023] on glossy synthetic data. Please zoom in to better compare the results.
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