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Figure 1: We present a new rendering algorithm, unified points, beams, and paths (UPBP), for light transport simulation in participating
media. UPBP combines a number of volumetric estimators based on points and beams with Monte Carlo path sampling techniques, all of
which have complementary strengths and weaknesses. The bottom row shows the contributions of the various volumetric transport techniques
to the final image at the top. As shown in Fig. 2, UPBP excels at rendering scenes with different kinds of media, where previous specialized
techniques each fail in complementary ways. (Scene inspired by Gkioulekas et al. [2013].)

Abstract

Efficiently computing light transport in participating media in a man-
ner that is robust to variations in media density, scattering albedo,
and anisotropy is a difficult and important problem in realistic im-
age synthesis. While many specialized rendering techniques can
efficiently resolve subsets of transport in specific media, no single
approach can robustly handle all types of effects. To address this
problem we unify volumetric density estimation, using point and
beam estimators, and Monte Carlo solutions to the path integral
formulation of the rendering and radiative transport equations. We
extend multiple importance sampling to correctly handle combina-
tions of these fundamentally different classes of estimators. This, in
turn, allows us to develop a single rendering algorithm that correctly
combines the benefits and mediates the limitations of these powerful
volume rendering techniques.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: global illumination, light transport, participating media,
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1 Introduction

Light scattering in participating media is responsible for many im-
portant visual phenomena. However, simulation of these effects
can incur a large computational cost as variations in media density
(e.g., haze vs. skin), scattering albedo (wine vs. milk), and scattering
anisotropy result in significantly different light interaction behaviors.
As such, designing a single light transport simulation algorithm that
is robust to these variations remains an important and open problem.

Two classes of widely adopted light transport simulation approaches
excel at rendering complex volumetric shading effects: those based
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on Monte Carlo integration [Georgiev et al. 2013] and those based
on photon density estimation [Jarosz et al. 2011a]. Several different
volumetric photon density estimators specialize in handling complex
effects such as indirect caustics, where bidirectional Monte Carlo
path-tracing (BPT) performs poorly. While previous work has empir-
ically demonstrated the power of the density estimation techniques,
no well-founded analysis of their relative performance exists.

We perform a canonical variance analysis of the various volumetric
radiance estimators categorized by Jarosz et al. [2011a] in order to
quantify the behavior of their relative performance under different
configurations. We show that while photon beam-based estimators
are beneficial for relatively sparse media, dense media are still often
better handled by traditional point-based density estimators.

Based on our findings, we seek to combine the strengths of all
potential volumetric estimators with the versatility of BPT in a
principled way. To that end, we develop an extension of multiple
importance sampling (MIS) that accommodates the combination of
these fundamentally different approaches into a single rendering
algorithm (see Fig. 1). The algorithm, which we call unified points,
beams, and paths (UPBP), excels at rendering scenes with different
kinds of media, where previous specialized techniques each fail
in complementary ways (see Fig. 2). In summary, we make the
following major contributions:

* We present a variance analysis showing the complementary
merits of point- and beam-based volumetric estimators.

* We extend multiple importance sampling to enable the combi-
nation of point-based, beam-based, and Monte Carlo volumet-
ric estimators.

* We implement a practical combined algorithm for robust light
transport simulation in scenes with different media.

2 Related Work

Light transport simulation. Photorealistic image synthesis re-
quires finding solutions to the equations of light transport [Immel
et al. 1986; Kajiya 1986; Veach 1997; Pauly et al. 2000]. The
two dominant classes of light transport simulation methods are pho-
ton density estimation [Jensen 1996; Hachisuka et al. 2008; Jarosz
et al. 2011a] and Monte Carlo (MC) path integration [Kajiya 1986;
Veach 1997; Pauly et al. 2000]. Our work builds upon the path
integral formulation developed by Veach [1997] in order to frame
light transport simulation as an MC process. We review its extension
to media [Pauly et al. 2000] in Sec. 4.1.

The formulation of light transport simulation as a Monte Carlo inte-
gration problem forms the basis of the seminal multiple importance
sampling (MIS) framework [Veach and Guibas 1995]. MIS exploits
the fact that the same light-carrying path can be sampled by several
path sampling approaches (or “techniques”) with different probabil-
ity densities. Veach and Guibas [1995] showed how these different
techniques correspond to different lengths of the eye and light sub-
paths of the path, which led to the formulation of bidirectional path
tracing. Since some estimators capture certain light transport paths
more efficiently than others, the idea of combining several estimators
into one algorithm has proven extremely useful.

While the original MIS framework considered only Monte Carlo
path integration, recent work has successfully extended it to include
surface photon density estimation [Georgiev et al. 2012; Hachisuka
et al. 2012]. Such a combination is particularly effective when han-
dling paths that are (nearly) impossible to sample with Monte Carlo
path integration, such as specular reflections of caustics from small
light sources [Veach 1997; Hachisuka et al. 2008]. Our work is
inspired by these recent advances but we propose a new framework
for combining photon density estimation and Monte Carlo path inte-
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Figure 2: Equal-time comparison of our UPBP algorithm against
previous work on the Still Life scene from Fig. 1. Only volumetric
transport is shown. Sec. 9 provides details on how these images
have been rendered.

gration. We also show how it can be applied to the more challenging
problem of rendering participating media.

Rendering algorithms for participating media have traditionally em-
ployed direct extensions of surface rendering algorithms [Lafortune
and Willems 1996; Jensen and Christensen 1998]. Here, path ver-
tices are placed not only on surfaces but also in the volume of the
media. The recently proposed “beams” [Jarosz et al. 2011a] repre-
sentation revealed that this traditional approach is in fact a legacy of
surface-based approaches, and that significant improvements [Novak
et al. 2012a; Novék et al. 2012b] are possible once path segments
(i.e., beams) are considered as fundamental entities of the light
transport simulation process. More recently, Georgiev et al. [2013]
exploited the path segment interpretation to derive more efficient
estimators for MC path integration in media to jointly sample mul-
tiple path vertices. Our work reformulates beam-based radiance
estimates [Jarosz et al. 2011a] in a manner that permits their incor-
poration in a novel, combined photon density estimation and Monte
Carlo path integration rendering approach.

Neutron transport. Several works in graphics have observed the
ties between neutron transport simulation and participating media
rendering [Arvo and Kirk 1990; Arvo 1993; D’Eon and Irving 2011;
Georgiev et al. 2013]. The use of kernel density estimation, however,
has started relatively recently in the neutron transport community.
The work of Banerjee [2010] estimates collision densities from a
set particle collision sites, roughly corresponding to volume photon
mapping [Jensen and Christensen 1998]. Dunn and Wilson [2012]
extended this idea to the estimation from particle tracks (or trajec-
tories), corresponding to photon beams [Jarosz et al. 2011a]. Our
variance analysis of different volumetric estimators in Sec. 5 is in-
spired by a similar analysis by MacMillan [1966] for the collision,
track-length, and expected value estimators [Spanier 1966].



3 Overview

Our main goal is to develop a volumetric light transport simulation al-
gorithm that is robust to a wide range of media properties. To achieve
this goal, we draw inspiration from previous work which combines
estimators with complementary strengths and weaknesses [Veach
and Guibas 1995; Georgiev et al. 2012; Hachisuka et al. 2012].

Which estimators should we combine? Jarosz et al. [2011a] de-
rived a number of point- and beam-based volumetric radiance estima-
tors from photon density estimation (Sec. 4.2). To gain an intuition
about their relative performance, we analyze their variance (Sec. 5).
We additionally exploit the analysis setup to relate the point and
beam estimators to the collision, track-length, and expected value es-
timators from the neutron transport literature [Spanier 1966; Spanier
and Gelbard 1969]. The analysis shows that the estimators’ relative
variance depends on the configuration (specifically, on the ratio of
their kernel size to the mean free path of the media), and that beam
estimators may in fact (somewhat counter-intuitively) yield higher
variance than point estimators. These results provide a strong incen-
tive for combining point and beam-based estimators in a robust light
transport simulation algorithm for volumetric media. In addition,
previous work [Vorba 2011; Georgiev et al. 2012; Hachisuka et al.
2012] has shown that using photon density estimators in a bidirec-
tional context and combining them with BPT can provide further
benefits. All these approaches rely on the path integral framework,
reviewed in Sec. 4.1.

How can we combine the estimators? While multiple importance
sampling [Veach and Guibas 1995] is a powerful tool for combining
estimators, previous work [Georgiev et al. 2012; Hachisuka et al.
2012] has identified fundamental difficulties that arise when applying
MIS to combine photon mapping with Monte Carlo path integral
estimators, such as BPT. To resolve those problems, we extend MIS
in Sec. 6 in a manner that permits combination of estimators of
integrals over spaces of different dimension (such as the various
point and beam estimators and MC path integral estimators). Our
MIS extension has potentially broader implications outside of the
context of light transport in participating media.

The combined algorithm. In Sec. 7, we map the volumetric point
and beam estimators to a form that is compatible with our extended
MIS. This results in a provably good combination of the estimators
that we implement into a single algorithm for robust volumetric light
transport simulation, detailed in Sec. 8.

4 Background

We begin by defining our notation and reviewing the path integral
formulation of light transport and volumetric radiance estimators.

4.1 Path Integral Framework

The path integral framework [Veach 1997; Pauly et al. 2000] ex-
presses image pixel intensity I as an integral over the space 2
of light transport paths: I = [, f(X)du(X). A length-k path
X = Xo...X; has k > 1 segments and k£ + 1 vertices, with its first
vertex Xo on a light source, its last vertex x; on the eye sensor, and
the x1 ... x,—1 scattering vertices on surfaces and/or in media. The
differential path measure du(X) is a product measure correspond-
ing to area and volume integration for surface and medium vertices,
respectively. The measurement contribution function f(X) is the
product of emitted radiance Le(xo) = Le (%0 — X1), path through-
put T'(X), and detector sensitivity We(x) = We (Xp—1— Xk ):

F(X) = Le(x0) T(X) We(xx). (1

The path throughput 7°(X) is the product of the geometry and trans-
mittance terms for path segments, and scattering function for the
inner path vertices, as expressed and illustrated below:

k—1 k—1
T(x)= H G(Xivxi+1)Tr(xi,xi+l):| [H P(Xz’)] )

We(x3)

X1

— — medium
]

surface

The geometry term for a path segment xy is given by G(x,y) =

V(x, y)%, where D(x—y) = |nx - wxy| if xis on

a surface, and D(x —y) = 1 if x is in a medium, and likewise
for D(y — x). Here nx is the surface normal at x and wxy is a
unit-length vector from x to y. V(x,y) is the visibility indicator
function. The transmittance of segment xy is given by

==yl
Ty (x,y) = exp (—/ ot (x + twxy) dt). 3)
0

We define the scattering function as

if x; on surface
4)

ps(Xi71 —X; Hxi+1)

p(xi)= N ~

Pp(Xi—1 = Xi = Xit1)0s(x;) if X; in medium,

where ps and p;, are the bidirectional scattering distribution function

(BSDF) and phase function, respectively. os and o denote the
scattering and extinction coefficients.

The path integral can be evaluated with an unbiased MC estima-
tor (I) = -3, f(X;)/p(X;) that averages estimates from
m random paths X; sampled using a path sampling technique
with probability distribution p(X) du(X). The path pdf p(X) is
given by the joint density of the individual path vertices, i.e.,
p(X) = p(xo,...,Xk), and it is determined by the path sampling
technique employed to generate the path. For example, bidirectional
path tracing (BPT) [Lafortune and Willems 1993; Veach and Guibas
1994] generates paths by independently sampling one subpath from
a light and another from the eye, optionally connecting them with an
edge. The different path sampling techniques in BPT for generating
a given path correspond to the different lengths of the light and
eye subpaths. The full path pdf is then given by the product of the
pdfs for the two subpaths, p(X) = p(xo .. .Xs)p(X¢...Xx). The
subpath pdf reflects the local sampling techniques used to generate
the individual subpath vertices, and can be written as a product of
vertex pdfs p(x;|vertices sampled before x;).

In our notation, we express directional pdfs p(w) w.r.t. the solid
angle measure, distance pdfs p(t) w.r.t. the Euclidean length on
R, and volume vertex pdfs p(x) w.r.t. the Euclidean volume on R?
In participating media, converting from the solid angle x length
product measure to the volume measure involves multiplication by
the geometry term G.

We define the subpath contribution, or weight, for light and eye
subpaths as the partial evaluation of a path integral estimator:

Cilxo. .. xi) = Lc(Xo)Z:((:;) : :;)) 5)
= T(x...Xk) N
CG(XJ . k) - p(Xj Xk) We( k) (6)
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Figure 3: lllustration of the volumetric radiance estimators considered by Jarosz et al. [2011a], generalized for light and eye subpaths of
arbitrary length. The number in each label denotes the equation number of the corresponding estimator.

4.2 Volumetric Estimators

Jarosz et al. [2011a] introduced nine distinct volumetric radiance
estimators that differ in the representation of equilibrium radiance
they employ, the radiometric quantities they estimate, and the di-
mension of blur employed when reconstructing the desired quantity
from the samples. We express these estimators using the path inte-
gral notation, permitting their evaluation on any segment along a
subpath. In contrast to the aforementioned unbiased path integral
estimators, Jarosz et al.’s volumetric estimators are not given as
general path sampling techniques, i.e. they have no notion of path
contribution function and path pdf. Providing such a formulation is
one contribution of this paper.

Fig. 3a shows the shared geometric setup for our formulation of
Jarosz et al.’s estimators. A light subpath extends to vertex xs—1,
hereafter denoted as a for brevity, and a direction wa is sampled
from a. The ray (a,wa) defines a photon beam, whose energy is
given by the light subpath weight including scattering at a

Ci(xg...a] =Ci(xo...a) p(a) . @)

Similarly, an eye subpath extends up to vertex xs41, denoted c, and
a direction w, is sampled from c. The ray (c, wc) defines a query
beam with weight w.r.t. the pixel estimate given by

Cole...x0) = 29 e . x0). (8)

By sampling a distance ¢a along the ray (a, wa), we could create

a photon at position b = %, with weight' Ci(xo ... aJ F‘gr(f:)) . We
could similarly create a query point at b = x, by sampling a
distance t. along the ray (c,wc). We could then follow Jarosz et
al. [2011a] and write some of the estimators in terms of the photons
and query points. We instead treat the photon beam (a,wa) and
the query beam (c, wc) as the common input to all the estimators,
and include the terms involved with the calculation of the photon
or query point weights into the estimator expressions themselves.
With this convention in place, every estimator operates on a shared
input, and estimators with the same blur dimension calculate the
same pixel value estimate, allowing their direct comparison.

'We use “weight” instead of the more common term “power” since the
quantity associated with volume photons in our notation has units of [W - m].

T.(ta) = = T (e
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Eqns. (9-17) give the expressions of the estimators, which are also
illustrated in Figs. 3b—j. While we only use the minimum-blur es-
timators (i.e., P-P3D, P-B2D and B-B1D) in our implementation,
we list all the estimators for the sake of completeness. All the esti-
mators share the same prefix C|(xo . .. a] and postfix Celc. .. xx)
which we purposefully omit for notational brevity. K, denotes a
normalized d-dimensional kernel. The scattering function p at a
query location x; is evaluated with the direction of the photon beam
or photon, which may not pass through this location. To describe
this behavior, we amend our definition of p as

Ps(Xim1 =X, Xj = X;j41)
Pp(Xim1 —Xi, Xj = Xj+1)0s(X;) X; in medium.

x; on surface

p(xmxj):{



We opt to fold the scattering coefficient o, which appears in Jarosz
et al.’s [2011a] estimator formulas, into the scattering term p. The
estimator abbreviations provide information about the radiance data
(photon Points or photon Beams), query type (Point or Beam) and
the kernel dimension (1D, 2D or 3D), in exactly this order (e.g.,
B-P3D refers to beam data X point query, 3D kernel.) This follows
our convention that mathematical terms appear in left-to-right order
according to the natural flow of light; note that this opposes the
convention used by Jarosz et al. [2011a].

“Long” and “short” beams. Jarosz et al. [2011a] derived photon
beams assuming a beam extends until the closest surface, with the
transmittance along the beam appearing as a part of the estimator.
We refer to this as “long” beams (Fig. 4a). Jarosz et al. [2011b]
proposed an unbiased approximation of transmittance by several step
functions, and coined this approach “progressive deep shadow maps.”
Approximating transmittance by a single step function yields beams
of finite extent where the transmittance vanishes (it is replaced by
a constant 1). We refer to this as “short” beams (Fig. 4b). The
same idea can be applied to query beams. To distinguish between
these options, we will use Bs and By to denote short and long beams
respectively, either of which can be used in place of any B in the
estimators in Eqns. (9-17). These extra choices result in a total of 25
distinct estimators. In the next section we derive explicit formulas
for the variance of all of these estimators in a canonical configuration.
In Sec. 7.3 we derive the effect of the step approximation on the pdfs
of the respective path sampling techniques.

a) Long photon beams  b) Short photon beams

¢) Photon points

Figure 4: “Long” and “short” photon beams, and photon points.

5 Variance Analysis of Volumetric Estimators

We present a variance analysis of the estimators in Eqns. (9-17),
along with their “short-beam” variants, in a canonical configuration
representative of their use in light transport simulation. Our goal is
to gain insights into the relative performance of the different point-
and beam-based estimators, and to motivate their combination in a
robust rendering algorithm. We also establish a firm relation of these
estimators to the neutron transport literature [Spanier and Gelbard
1969]. Since the analysis serves mainly as a motivation for the rest
of the paper, readers interested in practical results can skip to Sec. 6.

Analysis setup. Since our goal is to compare the variance of the
estimators under the same settings, we consider a canonical configu-
ration corresponding to the common estimators’ input depicted in
Fig. 3a, where the rays (a,wa) and (c, we) are given and held fixed.
The distances ¢, and . from the origins of the two rays to the point
closest to the other ray (where the kernel is centered) are, therefore,
also fixed. The shape of the kernel is an arbitrary choice, so we use
a d-dimensional cube kernel for all the estimators as its separability
simplifies the analysis. We use a line for 1D estimators, a square for
2D estimators, and a cube for 3D estimators (see Fig. 5). Finally,
to facilitate the derivation of closed-form variance expressions, we
assume that the two input rays are orthogonal and the medium is
homogeneous. These simplifying assumptions are acceptable since
our goal is to form an insight into the general behavior of variance,
not a generic result that would hold for any configuration.

a ca a oa
Wa Wa Wa Wa
ta ta ta ta,
C te C te, C tc [ te tj
© We 7 | We t:— © We uj © We
d ook
a) 1D kernel b) 2D! kernel c) 2D? kernel d) 3D kernel

Figure 5: Canonical configuration with orthogonal light and eye
rays and a 1D kernel (a), 2D kernel perpendicular to the light ray
(used in the B-P2D and B-B2D* estimators) (b) and to the eye ray
(in the P-B2D and B-B2D? estimators) (c), and a 3D kernel (d).

5.1 Variance Derivation

In the above setup, any of the analyzed estimators can be written as
(1) = (A) pw™(C), (18)

where the phase function value p is fixed in our setup, so it can
be disregarded in the variance analysis, w is the kernel width, d is
the kernel dimension, and the definition of the (A) and (C') terms
depends on the kernel type used by the estimator (see Fig. 5):

(A) = (T:(ta)) for the 1D and 2D kernels (19)
") (Tr(ta, tf))  for the 2D? and 3D kernels
2
() = (1} (tc_)> N for the lDland 2D kernels 20)
(T:(te ,td)) for the 2D and 3D kernels.

Here (T} (t)) denotes a transmittance estimator, and (7 (¢t~ , %))
denotes an estimator of transmittance integrated over the kernel:

— Ot

R tt e*O'tt__ 670tt+
Tr(t*,ﬁ)z/ T(t)dt = —+——— (2D
t

‘We consider two possible transmittance estimators, corresponding
to either 1) short beams or 2) long beams, and three integrated
transmittance estimators, corresponding to either 3) points, 4) short
beams, or 5) long beams. The different combinations of these five
estimators yield all the 25 pixel estimators that we wish to analyze.

Under our orthogonality assumption, the (A) and (C) terms are
statistically independent, so the expected value and variance of any
of the analyzed pixel estimators can be calculated from the first and
second moments of (A) and (C') using the standard relations:

E[(I).] = pw™® E[(A)] E[(C)] (22)
VI(I).] = p*w ™ (E[(A)? E[(C)?] — E(APE[(C)]) . (23)

In other words, to derive the variance, we only need to derive the first
and second moments of the different estimators of the transmittance
value, T} (t), and its integral, T} (¢t~ ,¢"), which we do next.

5.1.1 Moments of the transmittance value estimators

Short beams. Short beams estimate the transmittance 7 (o) at
a distance ¢ from the ray origin by sampling a distance ¢ from the
pdf proportional to transmittance, p(t) = o+7:(t), and evaluating:

1 ift>tg
Ty, = - 24
(T2, { 0 otherwise. 24

This estimator’s expected value,

E[(T})s,] = /oo 1p(t) dt = Ty (to), (25)

to

is also equal to its second moment, E[(7})3 ], because 17 = 1.



Long beams. Long beams evaluate the transmittance directly:
(Tx)s, = Tx(to), (26)

so we have E[(T})g,] = T (to) and E[(T3)3,] = Tx(to)>.

5.1.2 Moments of the transmittance integral estimators

‘We now shift our attention to the estimation of the transmittance inte-
gral (21). To establish the relation of the point and beam estimators
to the collision, track-length, and expected value estimators from the
neutron transport field [Spanier and Gelbard 1969], we use the latter
three to estimate this integral. We consider a variant of the neutron
transport estimators used to calculate collision rates of particles in-
side an (imaginary) detector, which in our case corresponds to the
integration region defined by the kernel. Traditionally, in a random
walk, the collision estimator contributes (or “scores”) 1/o¢ upon
every particle-medium collision that occurs in the detector volume,
the track-length estimator scores the length of every particle trajec-
tory (or path) inside the detector, and the expected value estimator
scores the expectation of every track-length (or path segment) in
the detector. In our setup each particle will only contribute upon its
first interaction in the integration region, since the shared configura-
tion of the density estimators established in Sec. 4.2 integrates only
single scattering events between the given light and eye subpaths.
Our analysis bears some similarity to that of MacMillan [1966] for
a slab, but we will arrive at different conclusions due to the different
analysis setup.

Points (the collision estimator). Points (photons) correspond
to sampling a distance ¢ from a pdf proportional to transmittance,
p(t) = o¢T:(t), and evaluating the collision estimator

(Tr)p = {é/at

It is easy to see that the expected value gives the correct result:

ift e t,tt]

27
otherwise. @7

tt t+

E[(Tr>p]:/t aitp(t)dt:/t T(t)dt=T.. (28)

(We omit the arguments of T: for brevity.) The second moment is:

E[(7)3] = / t+[1] pyar= T (29)

+— LOt Ot

Short beams (the track-length estimator). Short beams corre-
spond to sampling a distance ¢ using a pdf proportional to transmit-
tance and evaluating the track-length estimator:

(T3)p, = At (30)

where At, the track length of ¢ through the integration region, is:

0 ift <t™,
At={tT —t= ift>tT, 31
t—t" otherwise.

Again, the expected value of this estimator gives the correct result:

E[(7:)n,] = E[Af] = / TAtp(t)di (32)

¢+t

= /7(t —t7)p(t)dt +/:O(t+ —t7)p(t)dt =Ty, (33)

and the second moment is:
E[(T))3,] = E[A?] = / At? p(t) dt (34)

2 e —outt -
:;E[e Tae (@ — e - 1)) 69)

Long beams (the expected value estimator). Long beams cor-
respond to the expected value estimator, which scores the expectation
of the track-length through the integration region:

(T3)p, = E[At] = T;. (36)

Since this estimator scores the expected value directly, clearly its
expectation is E[(T})g,] = T} and E[(T})3 ] = T2.

5.1.3 Relation to volumetric density estimators.

By using one of the five estimators in Eqns. (24, 26, 27, 30, 36)
in place of the (A) or (C) terms in Eqn. (18), we obtain, in our
canonical configuration, any of the 25 different pixel estimators. For
instance, we obtain (I)p.p3p (9) by using the collision estimator (27)
for both (A) and (C); or, we can obtain (I)p.gop (11) by using the
collision estimator for (A), and the direct evaluation of transmittance
via long beams, Eqn. (26), for (C).

5.2 Variance Comparison and Discussion

Given the derivations above, we can now analyze the estimators’ vari-
ance. One useful comparison is to see how this variance behaves as
we change the width w of the blur kernel (expressed in units of mean
free paths, mfp = 1/0%). Since the expected value of most of the es-
timators depends on w, it is more useful to examine their normalized
standard deviation (NSD) o, [{I)«] = v/ V[{I)«]/E[(I)«]. Fig. 6
shows the NSD as a function of kernel width w for the estimators
with the lowest possible kernel dimension (P-P3D and the long/short-
beam variants of P-B2D, B-P2D, and B-B1D), since those are the
most useful for practical implementations. A similar plot for all the
25 estimators is included in the supplemental document. To examine
the effect of distance from a and c to the center of the kernel, we
setta = (tZ +t5)/2 =5mfpand tc = (t& +t2)/2 = 10 mfp.
From this experiment we can gain some interesting, and sometimes
unintuitive, insights.
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Figure 6: Normalized standard deviation (NSD) as a function of
the kernel width w for selected volumetric estimators. The B;-B;1D
estimator does not appear in the plot because its NSD is zero. A
similar plot for all the 25 estimators we consider is included in the
supplemental document.



Figure 7: Comparison of the results of different volume radiance
estimators for different kernel width w. For small kernels (left
column), the beam-based estimators perform better, while for larger
kernels (right column) the point-based estimators provide smoother
results. When w ~ 1 mfp (middle), all the estimators perform
roughly the same. The same number of photon points and beams
has been used to render these images. The brightness differences
among the images are due to the different effects of boundary bias
in the various estimators. The noise level differences among the
three Bs-By1D images, which are not predicted by our analysis, are
due to the additional variance from random sampling of the input
configuration. Sec. 10 provides a more detailed discussion.

Points vs. short beams: From the four estimators with highest NSD
(P-P, P-Bs, Bs-P, Bs-Bs) we see that short beams perform better for
smaller kernels (less than about 1 mfp), whereas points perform
better than short beams for larger blur kernels. As the blur goes
to zero, however, the variance of point-based estimators diverges to
infinity, but the variance of short beams is bounded. Hence, points
can be better than short beams in certain cases but they can also
be arbitrarily worse. The opposite is not true, however, since short
beams have bounded variance for any blur width. Also note that
P-B; and B;-P have identical variance, in spite of t5 # tc.

Long beams: With long beams, either the (A) or the (C) term
contributes zero variance, so the estimators with one long beam
appear lower on the plots. Due to the asymptotically poor behavior
of points at small kernel widths, the benefit from using long beams
in one dimension can be diminished by the high variance of points
in the other dimension.

Long beams vs. short beams: Let us now compare B,-* and *-B;
to their respective long-beam variants. We see that replacing a short
beam by a long one along the ray with the origin further away from
the kernel (tc > ta in our case) reduces variance more than when
this change is made along the other ray. This is natural, because the
farther away, the lower the probability that point or short beams will
reach the kernel, whereas long beams always reach it.

Summary. The practical result of the variance analysis is that
points can be better than beams and vice versa, depending on the
relative size of the blur kernel to the mean free path. Dense media are
better handled by points and thin media by beams. This is illustrated
in Fig. 7, where we render single scattering in a simple scene with
a candle illuminated from the side with the P-P3D, P-B,2D, and

B;-B;1D estimators using the same number of photon points and
photon beams. First, when the kernel width is 0.2 mfp of the medium,
the performance of the B;-Bs1D estimator is far superior to the other
two. However, when we set the kernel radius to 5 mfp, the B;-Bs1D
image becomes significantly more noisy than the other two. As
we will see later, our combined algorithm is able to automatically
assign high weight to the appropriate estimator. We note that while
our analysis assumes homogeneous media, and heterogeneity may
have some impact on the estimators’ relative variance, it will not
change the fact that no single estimator is superior to all others in all
circumstances, which is the core of our observation.

6 Extended Multiple Importance Sampling

The analysis in the previous section suggests that it would be ben-
eficial to combine the point- and beam-based estimators. Multiple
importance sampling (MIS) [Veach and Guibas 1995] is one ap-
proach for combining estimators. However, MIS only considers
estimators of integrals on the same space, which is not the case for
the different volumetric estimators reviewed in Sec. 4.2. Previous
work [Hachisuka et al. 2012; Georgiev et al. 2012] addresses the
issue by reformulating the estimators so that they all operate on the
same space and standard MIS can be applied. We instead extend
the MIS framework to accept estimators of integrals on spaces of
different dimension and we devise a corresponding balance heuristic
that yields provably good weights for these estimators. To accom-
modate the increased dimension due to the blurring in the photon
density estimators, we build on the idea of extended space discussed
in the previous work and incorporate it directly into the formulation
of a combined estimator. Since this extension may have potential
applications beyond the combination of the volumetric estimators
considered here, we purposefully keep the initial exposition generic.
In Sec. 7 we apply the theory to our specific rendering problem.

Review of multiple importance sampling. Consider an integral

fD z)dz. An estimator (I) = % 27;1 f(X;)/p(X;)
is constructed by taking m random variables X;, 7 = 1,...,m
from a sampling technique with the pdf p(z). Multiple importance
sampling (MIS) [Veach 1997] combines (weighted instances of)
estimators with different sampling techniques p;(x):

1 J(Xay)
Dwis = > = wi(Xi;) S22 37
s i—1 mj:1w ( J)pi(Xi,j) G7

where n; is the number of samples taken from the sampling tech-
nique with p;(z), and w; (x) are heuristic weighting functions that
must sum up to one for any x. A provably good choice for w; (z), in
terms of minimizing the variance of (I)wms, is the balance heuristic:

() = — api(E)

6.1 Combining Extended Space Estimators

Let us now consider extended space integrals of the form IF =
I [ f(x,y:) dy; dz with estimators
« I Dy,

1 = f(X;,Y;
IE el J\Ag, tig) 7]
mg XJ7Y,7) (39)

which can be interpreted as biased estimators of /. In our application,
integrals over the different D,, will be used to model blurring by
the different kernels, and the random variables Y; ; will correspond
to photon points and beams. Our goal is to combine estimators of



I with estimators of the potentially different I=’s while minimizing
the variance. The main challenge is that these estimators generally
have different expected values and, furthermore, the estimators of 1
have no notion of the integrals over the domains D, .

We begin by extending the combined estimator (37) to accom-
modate this setup. Suppose we have u > 0 sampling tech-
niques pi(z),...,pu(z), and n — u > 0 sampling techniques
DPut1 (T Yut1), - - -, Pn(x, yn) each of potentially different dimen-
sion. We define the extended combined estimator FC as

n g
1
c C
FO=Y 3 F (40)
i=1 " j=1
where the random variables Ff]- are defined as
F; ifl<i<u
FC, =% == 41
- {Ff;j ifu<i<n, “1

f(Xi) filXig,Yii)
pi(Xi,5) pi(Xi,5,Yi,5)

This estimator combines u regular and n — u extended space sam-
pling techniques, each taking n; samples. Note that the functions
fi(z,y) are allowed to be different for each individual extended
space technique. This allows us to model estimators with different
bias. We have chosen weighting functions that only depend on x
and not on y;, because D, is the common domain for both regular
and extended space estimators.

Fij = wi(Xi ;) Fijy = wi(Xi;)

¥

6.2 Extended Balance Heuristic

The key to the efficient combination of different estimators with MIS
is the use of a good weighting heuristic. In the spirit of Veach [1997],
we solve for the weights by minimizing the variance of the estimator
in Eqn. (40), arriving at the extended balance heuristic:

. _ ni/ki(x)
O S e ) “
where
% if1<i<u
ri(r) =4 43)

=< dy; ifu<i<n.
p,, Pi(,yi)

The different form of «;(x) for the extended space techniques is
due to the extra integration over D,,, they perform. They estimate
this integral by MC sampling (the random variables Y; ;), which
contributes to the estimator variance and is thus reflected in the
weight. In our application, the Y; ; variables correspond to photon
points and beams, which are, in fact, samples used to estimate the
integral that corresponds to blurring by a kernel.

This heuristic yields a combination with variance within the bounds
given by the following theorem. The proof of the theorem, given in
the supplemental document, provides a derivation of the heuristic.

Theorem 1. Let F€ be a combined estimator of the form (40), and
FC be the estimator that uses the weighting functions ; (42). Then

(u*)* -

with " = I + 8" and i = I — 3, where 3" and 3" are the lower
and upper bounds on the bias of the estimator F'C (please refer to

1

min; n;

V[FC] - V[F] <

()%, (44)

the supplemental document for the exact definitions of these terms).
This theorem is similar to Veach’s [1997] Theorem 9.2, and gives a
bound on the extra variance that the extended balance heuristic may
introduce compared to an unknown, hypothetical optimal weighting
function that truly minimizes the variance of F°.

7 Combining the Estimators

‘We now show how to apply our extended MIS framework to combine
the volumetric estimators in Eqns. (9—17) and unbiased path integral
estimators (such as BPT) into a single estimator of the form in
Eqn. (40). We need to express each of the estimators in a form
accepted by that formula, i.e., to define the variables = and y;,
the function f(z) or fi(x,y:), and the pdf p;(z) or p;(z, y;). We
take x to be a light transport path X as defined in the path integral
framework. This way the unbiased path sampling techniques are
already given in the desired form f(z)/p;(z), so we only need
to recast the volumetric estimators into the appropriate form. We
provide a detailed discussion for the estimators with the minimum
blur dimension (P-P3D, P-B2D, B-P2D, B-B1D), as those are the
most useful for practical implementations. We also briefly discuss
the extension to the remaining estimators.

7.1 Expressing Estimators as Sampling Techniques

We consider the configuration shown in Fig. 3a, where we are given
two vertices a and c at the end of a light and an eye subpath, respec-
tively, so the full path = would be x¢ . .. abc. .. xy. For notational
brevity, we omit all terms on the two subpaths up to and including
a and c. What remains is the vertex b where the estimator kernels
are centered (Fig. 8), so we have x = b. The y; variable is, roughly
speaking, the point of evaluation of the kernel, as detailed below.

Estimator pdfs. For the P-P3D estimator, we set yp.p3p = b, that
is, the 3D photon location (Fig. 8a). The technique’s joint pdf is

pepsn(z,y) = p(b, b) = p(b)p(b), (45)

because b and b are sampled independently.

For the P-B2D estimator, we first express the photon location b in a
coordinate frame (f: i, U) aligned with the query ray, i.e., {'= we,
as illustrated in Fig. 8b. The 2D variable yp_g2p is then defined as
ypg2p = (@, D), the photon’s u and v coordinates in this frame.
With this definition, the joint pdf of the P-B2D technique is:

peean(@,y) = p(b, i, 5) = plte,it, 7 |we)G(b, c)p(we) o

2 p(b)G(b, )p(we),

where in step (1), we factor out the direction sampling pdf for the
query beam using the relationship p(b) = p(we)p(te|we)G(b, ).

In step (2) we use p(b) = p(tc, 4, ¥|we) which holds because the

¢) Beam-Beam 1D

a) Point-Point 3D b) Point-Beam 2D

Figure 8: Definition of the variable y for three estimators.



transform from the global frame to the local frame around the query
ray is rigid and has no effect on the pdf (the change of coordinates
has a unit Jacobian). The derivation for the B-P2D estimator is
analogous to P-B2D, and its joint pdf reads

pep20(2,y) = p(wa)G(a, B)P(b) (47

For the B-B1D estimator, we set y = J, that is, the 1D distance
between the two beams (see Fig. 8c). The joint pdf is:

pesip(2,y) = p(b, d) = p(te, d | we)G(b, c)p(we)

) dtcdd
 p(wa) | 2| G, )p(we) (48)
Wa
2 p(wa) G(a, b) sin fuc G(b, €) plwe),
where the equality p(te, d |we) = p(wa) )dffi‘i‘ used in step (1)

is due to a reparametrization of the photon beam direction. In step
(2), we have used ‘dff—wdad’ = G(a, b) sin fac, illustrated in Fig. 8c.

To see why this holds, note that the differential patch dtc x dd is
observed from the point a under the solid angle dwa cos or/t2 =

dwa sin OacG(a, B), where o = 7/2 — Oac.

Contribution function. Given these definitions of y; and the esti-
mators’ pdfs p; (x, yi), we can now devise the contribution functions
fi from the relation (I); = f;(x,y:)/pi(x, y;). Doing this for all
the considered estimators yields the contribution functions in the
form fi(x,y;) = hi(x, y:) Ki(x,ys), where K; is a 3D, 2D or 1D
kernel, respectively, and

hi(z,y:) = p(a)T:(a,b)G(a,b)p(b,b)G(b,c)T:(b,c)p(c). (49)

By taking the ratio of the above contribution functions f; and the pdfs
pi, we indeed obtain the original estimators in Eqns. (9-17), with
the additional terms p(a)/p(a) and p(c)/p(c) that we considered
part of the input setup in Fig. 3a and excluded from the estimator
expressions (9-17).

Estimators with higher-dimensional kernels. The estimators
B-B2D, B-B3D, P-B3D, and B-P3D can be analogously mapped to
our framework, depending on how the integrals along the additional
dimensions are estimated. If they are computed analytically, then
only f; and K; need to be adjusted accordingly. If they are estimated
using MC integration, we also need to extend y; to include the
additional random variables, and the extended MIS weights will
automatically take into account the additional variance due to the
stochastic evaluation of these integrals.

7.2 Practical Approximation of the Balance Heuristic

Having expressed each volumetric estimator as a ratio of a contri-
bution function f; and a pdf p;, we could use the extended balance
heuristic (42) to evaluate the estimator weights in a combined algo-
rithm. However, the evaluation of the ;(x) term is not practical
as it involves evaluating an integral over D, which in our case is
the kernel support. We now find an approximation of x;(x) that
leads to an efficient implementation. Assuming that, for any given
x, the functions h;(z, y;) and p; (z, y; ) are approximately constant
within the support of the kernel K; (the same assumption as in prior
work [Georgiev et al. 2012; Hachisuka et al. 2012]), we have:

2 VK2 .
lﬂq,(l') :/ h’z (x’y'l)Kz.(w7y’L) dyz
Dy, pi(2,9:)

h2 5 ; *
o M@V [ g2 dys = R ey,
p’b(xayz) Dyi

(50)

B|-B; 1D
0.1
. Y— ———— —e——.= P-B;2D
2 - e - - - B,-B; 1D
[
= -3
= 10 /
2 [ B-P 2D
= e —
5 — e —— —_ - —_ B}-B, 1D
B e P-P3D
LN T Bs-P 2D
S P P-B, 2D
Z ol e e e BB, 1D
/-
o LY s L
1077 1 2 3 4

kernel width, w [mfp]

Figure 9: Weights for selected estimators calculated by the extended
balance heuristic, Eqn. (51), in the canonical setup from Sec. 5.

where y; is an arbitrary y; within the kernel support. The de-
pendency on y; appears in &’ (x,y; ) because we have pulled the
terms in front of the integral. If we furthermore assume that
hi(z,y;) =~ f(z), then all the h;’s and f’s from Eqn. (42) can-
cel out and we can write the extended balance heuristic in a form
suitable for practical implementation:

/ *

i nip; (2, yi)
Wi, Y7) = = (51)
Ek:1 nkp;(x,yk)

where pj(z,y;) = pi(x) for the unbiased path sampling techniques
and p}(z,y;) = pi(z,y7)/ [ K (z,y:) dy; for the techniques cor-
responding to the volumetric radiance estimators.

Under the aforementioned assumptions, y; can be set to an arbitrary
y; within the kernel support. In practice, when an extended space
technique i evaluates pj(z, y;), it uses the actual realization of the
photon variable (e.g., the photon location). Unbiased techniques
would use y; corresponding to the kernel center (e.g., the query point
in photon mapping). These are the same practical approximations as
in previous work [Georgiev et al. 2012; Hachisuka et al. 2012].
If we use a constant kernel in the form K;(x,y;) = |S:(2)|™",
where S; () is the support of K;(x,y;) for a given z, then we have

K2 (1) dy: = |i(2)] 2 / d=1si@) 6
Si(x

Dy,

This in turn yields p;(z,y;) = pi(z,y;)|S:(z)|, which exactly
corresponds to the vertex merging pdf of Georgiev et al. [2012].

Summary. Let us now summarize the practical outcomes of
our derivations so far. Each estimator considered in the mix-
ture yields a full family of sampling techniques corresponding
to evaluating the estimator at different vertices along the path.
Any technique in the combined estimator (40) weights its esti-
mates by Eqn. (51). This involves calculating the extended pdfs
pi(z,y;7) = pi(z,y;)/ [ K7 (w,y:)dy; for all the combined tech-
niques, where the pdfs p; for the volumetric estimators are given by
Eqns. (45-48). The constant [ K7 (,y;) dy; can be precomputed.
In practice, Eqn. (51) can be evaluated by taking pdf ratios [Veach
1997, Sec. 10.2], which are simple expressions because the pdfs
differ by only a few terms. Note that the unweighted estimates are
evaluated using the estimators in their original form, without any of
the approximations used to derive the MIS weights.

In Fig. 9 we plot the weights calculated using the above formulas for
selected estimators in the canonical setup described in Sec. 5. Com-
parison to the NSD plot in Fig. 6 reveals that high NSD corresponds



to low weight and vice-versa. This demonstrates the ability of our
extended balance heuristic to promote low-variance estimators while
lessening the contribution of the high-variance ones.

7.3 PDFs of Long and Short Beams

In the above derivations of the estimator pdfs, we have assumed
the use of long beams (see Sec. 4.2). To derive the impact of short
beams (i.e., the replacement of transmittance by a step function,
dubbed “progressive deep shadow maps” by Jarosz et al. [2011b]),
we use a new interpretation of short beams as a Russian roulette
(RR) decision on the outcome of the long-beam estimator.

Consider an arbitrary pdf p(¢) used to sample the length of a short
beam. The probability that the beam contributes at some distance o
from its origin is the probability that the beam length [ is at least £o:

Pr{l > to} = /Oo p(t)dt’ . (53)

to

Any long beam estimator can be converted to a corresponding short
beam estimator by making a zero contribution whenever the beam is
too short to make the considered contribution, else by the original
estimator divided by the RR probability (53). For example, take the
B-B1D estimator (17) and consider the use of short photon beams
and long query beams. The resulting estimator reads:

H(la —ta)

(I)B,-B;ID = <I>B1»B11Dm’

(54)

where [, is the length of the photon beam, and the Heaviside step
function H indicates whether or not the beam is long enough to make
a contribution at t5. If we further assume that the beam length is
sampled from a pdf proportional to transmittance, p(t) = o+ (t)1x(t)
(as is usually the case), we get Pr{la > ta} = T:(ta), and therefore

- Ki(b,b
(DYoo = Hla— ta) p(b,b) S22PL 7y ) (55
Sin Gac
This is the original B;-B; estimator (17), with the transmittance
T:(ta) along the photon beam replaced by a step function [Jarosz
et al. 2011b]. We could also apply the same procedure to the query

beam.

By interpreting short beams as Russian roulette, it becomes clear
that the pdf of a short beam estimator is given by the product of the
pdf of the corresponding long beam estimator and the RR probabil-
ity (53), usually given by the transmittance. This approach provides
an intuitive explanation, as well as a generalization of, Jarosz et
al.’s [2011b] unbiased progressive deep shadow maps. We could
use any suitable pdf to sample the beam length, giving rise to the
possibility of sampling “medium-length” beams. This could be an
interesting avenue for future work.

8 Combined Rendering Algorithm

We now have at our disposal a formulation that allows us to fuse
all of the volumetric estimators in Eqns. (9-17) and their short-
beam variants, along with the unbiased path sampling techniques
from BPT into a combined algorithm, which we call unified points,
beams, and paths (UPBP). Each volumetric estimator yields a whole
family of sampling techniques corresponding to the eye subpath
vertex where the estimator is evaluated. Formally, our algorithm
evaluates the extended combined estimator (40), where the unbiased
techniques are the various path sampling techniques in BPT, and
the extended space techniques correspond to evaluating P-P, P-B,
and B-B estimators at different path vertices or segments. We also
include the family of techniques corresponding to the P-P surface
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photon mapping estimator. Our combined algorithm therefore fully
subsumes the methods of Georgiev et al. [2012] and Hachisuka et
al. [2012].

The BPT sampling techniques are an important constituent of the
combined algorithm because they excel at connecting subpaths over
long distances (e.g., direct illumination in media far away from the
light). Our algorithm currently does not use the joint path importance
sampling techniques of Georgiev et al. [2013]. Including them
would further reduce variance, especially in scenes with highly
anisotropically scattering media for which none of the currently
used estimators is efficient.

Practical considerations. Combining all 25 variations of the vol-
umetric estimators (9-17) may not be productive since not all of them
have complementary advantages that the combined algorithm could
benefit from. For instance, P-B2D and P-B3D both have very simi-
lar pdfs and only differ by the amount of bias. For this reason, we
choose to only use the minimum-blur volumetric estimators, i.e.,
P-P3D, P-B2D and B-B1D, as they introduce less bias. This choice
is in line with previous work [Jarosz et al. 2011a].

Similarly, combining the long- and short-beam variants of the same
estimators would not be useful because the long-beam variant always
has less variance. On the other hand, evaluating the long-beam esti-
mators is more costly, so a judicious choice needs to be made. In our
tests, the use of short photon beams and long query beams provided
the best performance for a given time budget, so our implementation
uses the P-P3D, P-B;2D and B-B;1D estimator variants. Opting
for short photon beams is important for the overall performance,
because long photon beams have much higher cost of queries and
construction of an acceleration data structure, and this overhead is
rarely compensated by a corresponding variance reduction.

While using both the P-B2D and B-P2D estimators could further
improve robustness, our implementation only uses P-B2D (pho-
ton points and query beams). Again, this choice is motivated by
efficiency considerations: the P-B2D estimator can be efficiently
implemented as ray casting on a set of photon point spheres.

Implementation. Our implementation builds on top of the pub-
licly available SmallVCM framework [Davidovi¢ and Georgiev
2012]. It extends the VCM algorithm [Georgiev et al. 2012] to
handle participating media and produces an image by averaging the
results of independent two-stage iterations.

In the first stage, we trace a number of light subpaths, connect their
vertices to the eye (light tracing), and then store the vertices (photon
points) and segments (photon beams). We build separate hashed
grids over the surface and medium vertices, which are later used for
the P-P estimators. We also build an additional bounding volume
hierarchy (BVH) over the medium vertices for the P-B estimator.
Photon beams are organized in a uniform grid, which we found to be
faster than the BVH used by Jarosz et al. [2011b], though its query
performance still leaves much to be desired. We store fewer photon
beams than points, as the computational and memory cost per beam
is much larger.

In the second stage of every iteration, we trace one eye subpath
per pixel and construct a number of estimates as follows. Each
vertex, surface or medium, is connected to a light source and to the
vertices of a light subpath in order to evaluate the different unbiased
estimators from BPT. Furthermore, at each eye subpath vertex we
evaluate the P-P2D (surface) or the P-P3D (medium) estimator by
looking up the photons from the corresponding grid. For each eye
subpath segment passing through a medium, we evaluate the P-B;2D
and B,-B;1D estimators.
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Figure 10: Equal-time comparison of our combined algorithm
against previous work on a scene with a thin global medium and

dense media enclosed in the spheres.

9 Results

We compare our UPBP algorithm to the individual volumetric esti-
mators, Point-Point 3D (P-P3D), Point-Beam 2D (P-B;2D), Beam-
Beam 1D (Bs-B;1D), and to bidirectional path tracing (BPT). Be-
cause the volumetric estimators are designed to capture only medium
transport, we perform the comparison on a subset of light transport
paths, described by the expression’ L(S|D|M)* M S* E, that all of
those estimators can sample. To calculate this subset of transport,
our algorithm is modified from the description in Sec. 8 in that while
tracing an eye subpath, all non-specular surface contributions are
disregarded until the path goes through the first medium interaction,
from which point on the full combined algorithm is run. The im-
plementation for P-P3D, P-B;2D, and B,-B;1D estimators, designed
to emulate the previous work [Jensen and Christensen 1998; Jarosz
et al. 2008; Jarosz et al. 2011a], traces an eye subpath until the first
non-specular interaction, and evaluates the respective estimators for
the vertices or segments of this path. Our P-P3D estimator does not
use ray marching as suggested by Jensen and Christensen [1998],
so that the implementation is consistent with the derived theory.
Ray marching would correspond to evaluating more P-P3D than
P-B2D and B;-B;1D estimators (one evaluation per ray-marching
step), which would complicate the interpretation of the results. We
also include the comparison of our algorithm to BPT, which is mod-
ified to calculate only the subset of transport given by the above
regular expression. All the tests were run on a Windows 7 PC with a
4-core Intel 17-2600K CPU and 16GB of RAM using 8 threads.

For our main results, we sample fewer light subpaths for generating
photon beams than for generating photon points (see Table 1). We
set the number of subpaths such that the total rendering time spent
on evaluating the B-B estimator is about the same as the time spent
on the other estimators. While this simple heuristic works well in
our scenes, a more systematic analysis of estimator efficiency is an
important avenue for future work.

To demonstrate the robustness of our method, we render three scenes
containing media with a wide range of parameters (see Table 2), fea-

2L —light source, E —eye, S — purely specular surface interaction, D —
diffuse/glossy surface interaction, M — medium interaction.
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Figure 11: In this scene, our algorithm performs only slightly better
than P-B;2D due to the overhead induced by photon beams.

turing complex specular-medium-specular transport. Full-resolution
images for all the scenes are provided in the auxiliary material.

The Still life scene in Fig. 1 features different kinds of media (from
left to right: wax candle, glycerin soap bar on top of a block of a
back-scattering medium, diluted wine, apple juice, and olive oil).
Fig. 2 compares the result of our UPBP algorithm to the previous
methods, implemented as described above. These results are in line
with the observation we made in the canonical variance analysis,
that beams (Bs-Bj1D) are not necessarily more efficient than the
point-based estimators P-P3D and P-B;2D. For instance, P-B;2D
renders a less noisy image than Bs-B; 1D for the dense wax, while
the opposite is true for the thinner glycerin soap. The unbiased BPT
techniques efficiently capture the light transport in the thin diluted
wine and the apple juice. No single technique is able to efficiently
render all the media in this scene, while our combined algorithm
performs well.

The Mirror balls scene (Fig. 10) shows the good performance of
photon beams at rendering (reflected) caustics in thin media. The
number of photon beams per iteration is only 0.63% of the number
of photons. Despite this significant difference in the numbers of
samples, the variance of Bs-B;1D in the thin medium that fills the
space is very low. Although BPT is efficient at rendering volumetric
caustics, their reflections are more efficiently captured by Bs-Bi1D.
P-B2D and P-P3D produce good results in the two spheres with a
dense medium. However, the variance of P-P3D in the thin medium
is enormous, while P-B2D performs nearly as well as Bs-B1D. Our
combined algorithm is able to take the best of all these estimators to
produce a superior result.

The Bathroom scene in Fig. 11 has similar settings to the Mirror
balls scene and the various estimators show similar performance.
The B;-B;1D estimator excels at capturing the focused light around
the complex light fixture, while having high variance in the thick
media of the flasks contents and the washbasin. Our combined algo-
rithm still has an edge over P-B;2D, the best-performing previous
method, though the advantage of the combined estimator is nearly
offset by the overhead of evaluating many techniques.

While our implementation of the P-P3D and P-B2D estimators is
fairly well optimized, the B-B1D implementation leaves much room
for improvement. Speeding up B-B1D would strengthen the incen-
tive for the combined algorithm, as the beams would more efficiently
handle most effects in thin media. We however emphasize that, even
if we could afford storing as many photon beams as photon points,
the points would still remain an important component of the com-
bined algorithm responsible for transport in dense media.

(smo) ggdn
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Figure 12: Contributions of the different estimators to the UPBP image of the Still life scene from Figs. 1 and 2. The individual images show
a sum of a number of sampling techniques, corresponding to evaluating the respective estimators at all the medium vertices or segments
on the eye path. Note that the images in the bottom rows have skewed relative brightness as they accumulate unweighted contributions,
double-counting energy differently for different types of paths, and their exposure has been manually adjusted.

Table 1: Rendering settings and statistics. by a single estimator, running the other ones only serves to incur

Still life Mirror balls Bathroom an overhead. To resolve this issue, one would need to determine
Image resolution 1600 x 700 300 x 800 672 % 396 the appropriate numl?er of samples to take from eacb estimator in a
# light subpaths 1,120,000 640,000 602,112 given scene. A solution based on Metropolis sampling has recently
# photon beam subpaths 23,000 (2.05%) 4,000 (0.63%) 3,000 (0.50%) been proposed by Hachisuka et al. [2014]. It would be interesting to
Maximum path length 80 12 20 see how it performs with the estimators considered here.
Rendering time 25 min 60 min 60 min
#terations OUR 752 665 497 Asymptotic analysis and consistency. Our algorithm uses a
# iterations BPT 1315 1962 973 . . . .
# iterations P-P3D 2319 2367 2493 fixed kernel radius. A comprehensive asymptotic analysis of the
# iterations B-P2D 2096 1931 2018 trade-off between variance and bias, along the lines of the works of
# iterations B-B1D 2218 1331 1372 Knaus and Zwicker [2011], Jarosz et al. [2011b], and Georgiev et

al. [2012], would yield the appropriate radius reduction scheme and
make the combined algorithm consistent.
Contribution of individual techniques. Fig. 12 compares the

contributions of the individual volumetric estimators and BPT to Heterogeneous media. While our implementation currently sup-
our method, before and after the MIS weights are applied, for the ports only homogeneous media, our theoretical framework supports
Still Life scene from Figs. 1 and 2. We see that our MIS weights heterogeneous media without any modifications.

are effective at weighting down high-variance (noisy) contributions,

while promoting lower-variance (smooth) ones. This empirically 11 Conclusion

validates our MIS weight derivation in Sec. 6 and 7.

We have proposed a way to combine within and across two classes
of widely adopted volumetric light transport simulation approaches:
those based on Monte Carlo integration and those based on photon
density estimation using points and beams. Our variance analysis
revealed that many of the point- and beam-based density estimators
have complementary benefits dependent on the properties of the me-
dia being simulated. We also solidified the mathematical connection
between these estimators and related ones used in neutron transport.
In order to harness these benefits along with unbiased path sampling
techniques, we developed an extended multiple importance sam-
pling framework for combining estimators of integrals of different
dimension and an extended balance heuristic which automatically
weights such disparate estimators in order to minimize variance. We
demonstrated the utility of this framework by combining several

10 Discussion and Limitations

Variance analysis. Our canonical variance analysis in Sec. 5 only
considers the source of variance that differs among the individual
estimators, but disregards the variance from sampling the input
configuration. This additional variance depends on the kernel width
(the smaller the width, the lower the probability that the beams pass
through the kernel) and diverges as w — 0. Therefore, the result
of zero variance for B;-B; in the restricted setup we consider is not
in contradiction with Jarosz et al. [2011b], where the total variance
of the B;-B;1D estimator is shown to be O(1/w). Analysis of this
extra variance for all the estimators is left for future work.

Bias and efficiency. Our variance analysis as well as the extended ppipt- gnd beam-base.d density estimatgrs together with unbias.ed
balance heuristic are only based on the estimators’ variance per sam- bidirectional path tracing to form a practical algorithm for rendering
ple taken. In practice, however, one is interested in the estimators’ partlc.lpatlng media. Our resulting unified algorlthm automatllcally
total error (due to both variance and bias) per unit time. For example, exploits the complementary benefits of each technique to provide a
while long photon beams always have lower variance than short comblnatlgn more r(?bust to scene variations and lighting scenarios
beams, rendering with long beams may be less efficient due to the than any single previous technique alone.

computational overhead. Likewise, the point and beam estimators
with a large kernel produce smoother results (less variance) than BPT Acknowledgments
but the error may be higher because of bias. Despite some initial
results [Hachisuka et al. 2012, supplemental document], analyzing
these behaviors and designing practical bias- and efficiency-aware
combination heuristics remains an important open problem.
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Table 2: Medium parameters for the Still Life (top) and the Mirror Balls scenes (bottom). Media are listed in the order in which they appear
in the respective scenes from left to right. The mean free path value of the media is given here as a multiple of the largest side of the enclosing
object’s bounding box. The rightmost column gives the mean cosine of the Henyey-Greenstein phase function.

. Scatteri fficient o5 Ab ti fficient o, Single-scatteri Ibed

Medium iil ering c((})e clen! ];T IiOl‘p 10n g)e c1enBa lll{lg e-sca érlng al % (] Mean free path g
Wax candle 1.5000 1.5000 1.5000 0.0300 0.1000 0.2000 0.9803 0.9615 0.7500 0.032 0.8
Glycerin soap (top) 0.0201  0.0202 0.0221 0.0020 0.0040 0.0002 0.9090 0.8347 0.9910 2.300 0.6
Block (bottom) 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.5000 0.5000 0.5000 2.500 -0.9
Diluted wine 0.0150 0.0130 0.0111 0.1220 0.3510 0.4020 0.1094 0.0357 0.0268 0.365 0.9
Apple juice 0.0201  0.0243 0.0323 0.1014 0.1862 0.4084 0.1654 0.1154 0.0732 0.412 0.9
Olive oil 0.0410 0.0390 0.0120 0.0620 0.0470 0.3530 0.0042 0.4535 0.0995 0.581 0.9
Global medium (fog) 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.6667 0.600 0.5000 5.000 0.5
Green glass sphere 0.0004 0.0001 0.0004 0.0200 0.0010 0.0200 0.0196 0.0909 0.0196 12.62 0.0
Orange sphere 0.1000  0.1000  0.1000 0.0050 0.0600 0.2600 0.6250 0.9523 0.2777 0.043 -0.9
Dark amethyst 0.0600 0.1000 0.1000 0.0001 0.0100 0.0100 0.5964 0.0909 0.0909 0.100 -0.3
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